
i

TOPAZ FOR PASCAL
VERSION 4.0

USER’S GUIDE

MARCH 1993

Single-User, Multi-User, Real Mode,
Protected Mode (DPMI), and MS Windows Versions

For IBM PC, XT, AT, PS/2 and compatible computers

(c) Copyright 1988, 1997 Software Science Inc.
168 South Park, Suite 500
San Francisco, CA 94107

http://www.softsci.com

All Rights Reserved World Wide

ii

COPYRIGHT NOTICE

(c) Copyright 1988,1997 by Software Science Inc. All Rights Reserved Worldwide. This publication and the
TOPAZ software system have been provided pursuant to an agreement containing restrictions on its use, and are
protected by federal copyright law. Except for archival purposes, no part of this publication or software may be
copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or
computer language, in any form or by any means, electronic, mechanical, magnetic, manual, or otherwise, or
disclosed to third parties without the express written permission of Software Science Inc., 168 South Park,
Suite 500, San Francisco, CA 94107, USA. Application software compiled with TOPAZ units into executable
programs may be distributed without obligation to Software Science Inc.

TRADEMARKS

TOPAZ, SAYWHAT?!, VIDPOP, REPGEN, MAKEPAS, and Software Science are trademarks
of Software Science Incorporated. Windows, as used in this manual, shall refer to Microsoft's implementation
of a windows system. Other brand and product names are trademarks or registered trademarks of their respective
holders.

iii

DISCLAIMER

SOFTWARE SCIENCE INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Further,
Software Science Inc. reserves the right to revise this publication or the TOPAZ software system and to make
changes from time to time in the content hereof without obligation of Software Science Inc. to notify any person
or organization of such revision or changes.

ACKNOWLEDGEMENTS

Software Science Inc. would like to thank the following persons for their invaluable assistance in
developing, producing, and supporting TOPAZ: George Rothbart, Richard Matzinger, Max Weinryb, Jan
Dornbach, David Watkins, Brian Collins, Rob Nelson, Ella Freeman, Andrew Grossberg, Werner Bogula,
Thomas Grüter, and our diligent beta-testers. A special word of thanks goes to James Troutman for inspiring the
DBF4 unit and providing his low-level dBASE routines.

iv

TECHNICAL SUPPORT

Software Science Technical Support is provided to registered customers for all of our software products.
Software Science provides qualified personnel to answer all your technical questions.

Telephone Support (510) 845-2110

Office hours are Monday through Friday, 8:30 a.m. to 1:30 p.m., Pacific Time

Email Support ssi@well.com

Technical questions should be addressed to the Technical Support Department. Please do not use fax for sending
your code.

SSI Support page http://www.softsci.com/support

We provide the latest changes in TOPAZ code on our support web page. This page also has FAQ and examples
to download.

Fax Support (415) 479-2563

Software Science provides a 24 hour fax line. Technical questions should be addressed to the Technical Support
Department. Please do not use fax for sending your code.

BBS (415) 479-1746

Software Science has an electronic bulletin board where utilities, demos, and other files are posted.

Parameters: 300, 1200, 2400, or 9600 baud,
No parity, 8 bit words, 1 stop bit

If you have a special technique or suggestion that you wish to share with other TOPAZ programmers, you are
welcome to submit a text file on disk to Software Science or upload it to our bulletin board or send e-mail to us.

v

TABLE OF CONTENTS

I N T R O D U C T I O N . 1

WHAT IS TOPAZ? . 3

SYSTEM REQUIREMENTS . 4

TYPOGRAPHY . 4

INTRODUCTION TO TOPAZ . 5

GETTING STARTED QUICKLY . 8

COMPILING YOUR TOPAZ APPLICATIONS . 10

T U T O R I A L . 13

A SIMPLE EXAMPLE OF FULL-SCREEN EDITING . 15

USING DBASE FILES . 18

CREATING AND MODIFYING DATABASE STRUCTURES - CREATE.EXE 23

CREATING PASCAL STRUCTURES AND PROGRAMS - TEMPLATES - MAKEPAS.EXE 25
AVAILABLE MACROS . 27
AVAILABLE DOT COMMANDS . 27

INDEXING DATABASES . 29

DIALOG BOXES . 35

PROGRESS BARS . 40

BROWSE . 42

FULL-SCREEN DATA EDITING . 50

SCREEN COORDINATES . 52

MEMO FIELDS . 53

TEXT EDITOR AND EDITOR COMMANDS . 60
Editor Clauses . 64

vi

Keyboard Remapping . 65

DATE MATH . 68

TIME MATH . 71

CLOCKS AND CALENDARS . 73

USING THE POP-UP CALCULATOR . 76

PICKING AND TAGGING FROM LISTS . 79

VIRTUAL FILES AND LINKED LISTS . 82

SETTING THE COUNTRY CODE . 91

THE REPORT GENERATOR - REPGEN.EXE . 92
AVAILABLE REPGEN OPTIONS . 93

PRINTING PAGE IMAGES . 98

ERROR HANDLING . 101

INTERFACE TO SAYWHAT?!
SCREENS AND MOVING-BAR MENUS . 104
DISPLAYING SAYWHAT?! SCREENS . 105
SCREEN LIBRARIES . 106

MOVING-BAR MENUS . 108

ADDING MOUSE SUPPORT . 114

PRINT SPOOLING . 117

THE TOPAZ HELP SYSTEM . 119

INTERRUPT SERVICE ROUTINES IN TOPAZ . 123

TOPAZ SCREEN SAVERS . 124

STACK AND HEAP SPACE . 126

OVERLAY COMPATIBILITY . 129

INTERMEDIATE LEVEL ACCESS
TO dBASE FILES . 131

vii

M U L T I - U S E R P R O G R A M M I N G . 135

WRITING MULTI-USER PROGRAMS- OVERVIEW . 137

NETWORKS SUPPORTED . 137

MULTI-USER COMMANDS . 139
Locking Files and Records . 139
Releasing Locks . 139
Locking Retries . 139

PROGRAMMING METHODS AND TECHNIQUES . 141
Simple Record Locks . 141
Advanced Record Locks . 142
Appending Records . 143
Indexing, PACKing and ZAPping Files . 145
Reporting in a Multi-User system . 146
Browsing in a Multi-User system . 146
EDIT and EditRecord Routines in a Multi-User system . 147
Memo Files in a Multi-User system . 147
Temporary Files . 147
Deadlocks . 147
Database Safety Issues . 147
File Attribute Issues . 148

SINGLE-USER VS. MULTI-USER SOURCE CODE . 149

ADDITIONAL NOTES FOR NOVELL NETWORKS . 150

THE TOPAZ SPOOLER
AND NETWORK PRINTING . 151

TOPAZ INTERNAL METHODS . 152

D A T A B A S E E N G I N E
F O R W I N D O W S . 157

TOPAZ DATABASE ENGINE FOR WINDOWS . 159

T E C H N I C A L R E F E R E N C E . 161

PROCEDURES AND FUNCTIONS REFERENCE . 163

A P P E N D I X . 667

viii

GLOBAL TYPES, CONSTANTS, VARIABLES
AND DEFAULT SETTINGS . 669
Common predefined constants . 669
TZPRINT, REPORT4 . 669
BROWSE4 . 671
DBF4 . 672
DIALOG . 673
EDIT . 673
INDEX4 . 674
MEMO . 674
PICK . 675
TZPRINT . 676
REPORT4 . 676
SAYGET4 . 676
SPOOLER . 677
TIMEDATE . 678
TZCOMMON . 678
VFILES . 681
VIDPOP . 681
DEFAULT SETTINGS . 683

LOW LEVEL ACCESS TO dBASE FILES . 684

S U B J E C T I N D E X . 689

 TOPAZ Introduction 1

I N T R O D U C T I O N

 2 TOPAZ Introduction

 TOPAZ Introduction 3

WHAT IS TOPAZ?

TOPAZ is a collection of Pascal units that integrates a broad spectrum of procedures and functions into
a single programmers' toolkit.

TOPAZ allows Borland/Turbo Pascal programmers to write with "dBASE-like" syntax. Almost all of
the data-entry functionality of dBASE is made available by TOPAZ. For example, you will now be able to SAY
prompts and GET variables at any screen coordinates, with cursor motion and editing implicitly handled. As in
dBASE, you can specify PICTURE and RANGE clauses. TOPAZ permits you to read from, write to, and create
dBASE III files. Just as with dBASE, you can SELECT up to 10 data areas and position the database to any
record via GoTop, GoBottom, SKIP statements and so on. TOPAZ also provides a powerful BROWSE capability,
as well as an indexing scheme with dBASE-similar syntax, so you can INDEX_ON a key expression of unlimited
complexity and activate indexes on a selected database with SET_INDEX_TO. TOPAZ will order the database
file in key order, and you will be able to FIND records based on a key. The version 4.0 release of TOPAZ
maintained its own index structure and therefore did not read, create, or update dBASE index files. NOTE:
TOPAZ versions 5.0 and up support standard dBASE indexes.

TOPAZ provides additional features that have dBASE-like syntax but go beyond what dBASE III or
dBASE IV itself provides. For example, TOPAZ makes it easy to validate data entry, pop up context-sensitive
help screens, and so forth.

TOPAZ is remarkably easy to use. What made dBASE a great language--for beginner and veteran
alike--has been emulated in TOPAZ. The dBASE syntax and philosophy has been "cloned" into TOPAZ where
ever possible.

TOPAZ makes writing Pascal applications a snap. Data entry and data base applications come together
with a minimum of code, and will always be easy to read and maintain. TOPAZ comes with utilities to create
database files, generate reports, and to automatically write all the code you need to maintain a database. Use the
utility as is, or study it to see how to write your own applications with TOPAZ.

TOPAZ is not copy-protected. All TOPAZ files can be copied to your hard disk, and you may make
a backup copy of the distribution diskettes for yourself only.

Software Science does not reserve rights to commercial packages which you write using compiled
TOPAZ units.

 4 TOPAZ Introduction

SYSTEM REQUIREMENTS

TOPAZ was written for the PC-DOS and MS-DOS operating systems installed on IBM PC, XT, AT,
PS/2 and compatible computers. What you specifically need is:

IBM PC/XT/AT, PS/2, COMPAQ or compatible computer.

PC-DOS or MS-DOS version 2.0 or greater.

Borland Pascal or Turbo Pascal compiler version 5.0 or greater.

NOTE: It is not necessary to own dBASE to take full advantage of the TOPAZ routines.

TYPOGRAPHY
Please note the following typographic conventions:

Italics In all text, this typeface represents TOPAZ procedures, functions, variables and parameters.

Boldface In the Technical Reference section, all references to the particular procedure or function
described are represented in this type.

UPPERCASE This represents dBASE/FOXBASE/CLIPPER like syntax in the Technical Reference section.

Monospace All code examples are represented in this typeface.

SMALLCAPS All field names outside of code examples appear in this typeface.

<FinePrint> A key on your keyboard is indicated by this typeface; for example <Esc> or <Enter>.

Courier This type represents text appearing on your screen.

 TOPAZ Introduction 5

INTRODUCTION TO TOPAZ

When a programmer, such as yourself, sits down to write an application program, there are many
considerations that go well beyond merely the job the application is intended to do. If your boss tells you to write
"something simple to print invoices", chances are you will be devoting much more effort to the user interface,
handling errors, designing the architecture of the data, and managing that data, than the "bottom line" task of
printing a simple invoice. All programs are that way: functionally simple (at least to the end user), but fraught
with a myriad of details, considerations and choices that can turn the work of programming into a lengthy and
complex exercise.

For instance, any application you write will require that messages be placed on the computer screen,
and data be input from the keyboard. In other words, just about any programmer has to confront the issue of
"terminal I/O". As applications grow, the complexity of your visual presentations and handling of the keyboard
become more and more crucial to the user friendliness and success of the program.

Before dBASE came along in the early 80's, handling terminal I/O meant writing a sequence of WriteLn
and Readln statements. No problem. But, if you wanted the user to have the simple luxury of skipping back to
a previous data entry field, you would have to break the problem down into reading each keystroke and
interpreting where to send the cursor, and what to do with the keystrokes that were being entered. What started
out being so simple grew and grew into, well, spaghetti code. None of which had the slightest impact on the
actual function of the application.

When dBASE emerged on the scene, it gave PC programmers a few simple commands that solved the
whole problem. The fundamental dBASE input commands were:

@ row, column SAY "Enter Last Name: " GET LastName
READ

Admittedly, that doesn't look too different from the Pascal:

GotoXY(column, row);
Write('Enter Last Name: ');
ReadLn(LastName);

In dBASE though, the programmer could list up to 128 SAY/GETs prior to the READ statement. The
READ statement would then act upon all the GETs before it. The user could navigate the cursor through all fields
in both the forward and reverse directions. When the last field was input, control was returned to the next line
of code and all the variables would be filled in with data entered by the user. In addition, dBASE recognized most
of the WordStar editing commands in a READ statement. So keys combinations such as <Ctrl-Y> would erase the
current field, <Ctrl-V> would toggle Insert vs. Overwrite mode, and so on. This meant that the programmer no
longer had to be concerned with the low level management of data entry and the end user would feel comfortable
with a familiar de facto editing standard.

 6 TOPAZ Introduction

dBASE took data entry even more seriously however and gave us the PICTURE and RANGE clauses.
These were statements tacked on to the end of a SAY..GET line that formatted and/or restricted the data the user
entered into fields. For example, the dBASE statements

@ 4,10 SAY "Enter State: " GET state PICTURE '!!'
@ 5,10 SAY "Enter Age : " GET age PICTURE '99' RANGE 18,62

automatically limits input to two-characters, forces upper case for the variable 'state' in the first line, forces a two
digit numeric result between 18 and 62 in the second line. Needless to say, this created a rather carefree
environment to program in, and helped make it possible for a new generation of programmers to write programs
where the real effort was on the application logic rather than the mechanics of data entry. Today the number of
dBASE programmers stands in the millions, and the dBASE syntax is just as much a language as it is a tradename
for a specific embodiment of that language. The dBASE language "family" now includes FoxBase, Clipper,
QuickSilver, dBXL, and (as you will soon see), TOPAZ.

At about the time dBASE was catching on, another programming language popped up: Turbo Pascal.
Turbo Pascal was an instant hit not only with novice and amateur programmers but with those who really
appreciated structure, power, and speed. Turbo Pascal offered an integrated programming environment with
editor, compiler, and linker combined into a single program. It was fast, offered all the structured benefits of
Pascal, and gave the programmer access to the machine's operating system, interrupts, and hardware. Yet, the
old problem of data entry and datafile management had not really been addressed.

And that brings us to TOPAZ. TOPAZ is a set of Borland/Turbo Pascal units that allows you to write
code in Pascal but almost as though you were writing in dBASE. Now you have the ability to dash off Pascal code
that might look something like this:

SET_DELIMITERS_TO('<','>');
SET_COLOR_TO(Yellow, Blue, Blue, Yellow);
SELECT(2);
USE('INVOICES', @inv, SizeOf(inv));
ClearRecord;
SayGet(4,10,'Invoice Number: ',invnum,_I,6,0);
SayGet(4,11,'Customer Code: ',custcode,_S,4,0);PICTURE('!!!!');
SayGet(4,12,'Amount Due: ',due,_R,9,2);
ReadGets;
APPEND;

and have it run as dBASE would--with no concern for the actual character-by-character mechanics of data display
and entry, or the details of opening and closing data files.

Although we have focussed on data entry as an example of the "dBASE way", you will find that TOPAZ
allows you to handle database files also using dBASE language elements. This is, opening a database file is done
with USE, adding a new record is as simple as calling APPEND, moving to the next record is done with a SKIP,
and so on. TOPAZ permits 30 database files to be open concurrently, each with up to 16 indexes, and you can
relate these files with any linkage you choose. Imagine moving to a record in one database, and having all the
other related databases move to the appropriate corresponding records, automatically! TOPAZ lets you do that,
and a great deal more.

 TOPAZ Introduction 7

Experience has shown that marrying the simplicity and elegance of dBASE with the speed and power
of Pascal leads to the ability to create dazzling applications in a fraction of the time that would otherwise be
needed.

In the next section, we show you how to get a simple database application up and running from
scratch in just a few minutes even if you're just a novice in Pascal!

In the sections that follow, we present a simple example illustrating full-screen data entry with TOPAZ,
and how to read and write to database files. The next sections go into more detail on data formatting, creating and
indexing database files, using the BROWSE feature in TOPAZ, date and time mathematics, using the TOPAZ
report generator, error handling, using clocks, calendars, dialog boxes, and other useful topics.

The Quick Reference part of this manual contains extremely useful tables: a list of all TOPAZ routines
by function, and a dBASE-to-TOPAZ conversion table.

The largest part of this manual is the Technical Reference, listing in detail all of the TOPAZ procedures
and functions you now have available.

Finally the Appendix provides a detailed listing of all TOPAZ global types, constants, variables, and
default settings. It is followed by a discussion of low level access to dBASE files, and an Index to help you find
topics quickly.

Don't forget to check the README file on the TOPAZ distribution disk(s) for additional
documentation and information that was developed after the manuals went into print.

 8 TOPAZ Introduction

GETTING STARTED QUICKLY

TOPAZ allows you to create and run a complete database application to maintain a dBASE file with
a primary index and full screen editing in just four steps! The following assumes that you have built the TOPAZ
units as described in the previous chapters.

STEP 1. Create a database (.DBF) file (or skip this step if you already have one). From DOS, invoke the
TOPAZ CREATE.EXE utility:

C> CREATE <filename>

The filename is the name of the dBASE file you wish to create. CREATE will prompt for a filename
if you omit this parameter. No extension to the filename is required. If you are familiar with dBASE, the TOPAZ
CREATE operates almost identically to the CREATE facility in dBASE. CREATE will permit you to specify the
description of each field in the database to be created. Enter <Ctrl-End> when you are finished entering fields.
Alternatively, you can skip CREATE and use any of the sample DBF files archived in the SAMPLES.ZIP file
on the TOPAZ distribution disk(s) (such as CUSTOMER.DBF, MAILING.DBF, or SALES.DBF), or your own
DBF file.

STEP 2. Run MAKEPAS. From DOS, invoke the TOPAZ MAKEPAS.EXE utility:

C> MAKEPAS

MAKEPAS will present a selection box with a list of the available templates. Select PROGRAM.TEM
and press <Enter>. MAKEPAS will then display a list of database files and you should select the database you want
to generate a program for. Next MAKEPAS will present a list of the fields in that database and ask which one
should be used for the index key. Use the cursor keys to select a field, and press <Enter> to accept the selection.
MAKEPAS will then take a few seconds to write the Pascal source code for an entire application program using
many of the TOPAZ procedures and functions. The default name of the Pascal source file will be <database>.PAS
(e.g., if the dBASE file was named CUSTOMER.DBF, the source code file will be named CUSTOMER.PAS).

STEP 3. Compile the output of MAKEPAS. Use your Turbo Pascal compiler to compile the code just written.
For simplicity's sake, use the command line version of the compiler, TPC.EXE:

C> tpc <filename> /L

For example if MAKEPAS created the source file CUSTOMER.PAS then at the DOS prompt type:

C> tpc CUSTOMER /L

The compiler will then generate the file CUSTOMER.EXE.

 TOPAZ Introduction 9

STEP 4. Run your new program! From DOS, type:

C> <filename>

For example if the compiler produced the file CUSTOMER.EXE then at the DOS prompt type
CUSTOMER. Voila! Your application program is up and running. If the dBASE file already existed and was
not empty, you will immediately be able to scan through records, edit them, and add new records. If you just
created a dBASE file, or started with an empty file, you will now be able to add records. Once you have records
in your file you will be able to FIND based on a key, BROWSE, and do other useful activities. To return to DOS,
press <Q>.

Next, you can view the source code to see where all the magic comes from, or customize the code in
any way you wish.

Another good way to become aquainted with TOPAZ is to take a look at the sample program
MEMODEMO in the MEMODEMO.ZIP file on the TOPAZ distribution disk(s). The following four steps will
walk you through compiling and running MEMODEMO. We assume you have installed TOPAZ in the
C:\TOPAZ directory, and your compiler is on the DOS path.

 1. Go to the TOPAZ SAMPLES sub-directory and unzip the file MEMODEMO.ZIP:

C> a:unzip MEMODEMO

 2. Compile MEMODEMO.PAS:

C> tpc MEMODEMO /m /l /uC:\TOPAZ\SINGLE

 3. Run the resulting MEMODEMO.EXE file and explore its behavior and features. Next, view the source
code (MEMODEMO.PAS) to see how the program was constructed and how the features were
achieved. For more examples, look at the files contained in SAMPLES.ZIP and PHONE.ZIP.

Since the sample programs do not take advantage of all the features available with TOPAZ we
recommend you read the Tutorial (next section) and browse through the Technical Reference section to become
familiar with the many routines available in the TOPAZ library.

 10 TOPAZ Introduction

COMPILING YOUR TOPAZ APPLICATIONS

It is assumed that Turbo Pascal or Borland Pascal has been installed on your computer according to the
instructions which came with the compiler. Only two files are required to compile your TOPAZ programs,
TPC.EXE and TURBO.TPL.

Many TOPAZ programs (including those written by the MAKEPAS code generator) will require more
memory to compile than is available when running the compiler/editor integrated environments, and thus must
be compiled from the DOS prompt with the command-line compiler.

To compile a program called MYPROG.PAS (in any directory, i.e. \WORK) using TOPAZ simply type:

C:\WORK> tpc myprog

provided the following is true:

 1. The directory where TPC.EXE (or BPC.EXE) is located is on the DOS PATH, and

 2. The compiler configuration file, TPC.CFG (found either in the current directory or in the directory
where TPC.EXE is located) contains a /U compiler directive telling TPC where the compiler's run-time
library and where the TOPAZ units are located.

For example, suppose your TOPAZ units are located in the \TOPAZ\SINGLE sub-directory, and
TPC.EXE is located in the \TP directory, both on drive C. Then you will want to put C:\TP on your path, and
create a TPC.CFG file in the \TP directory that contains the line:

/Uc:\TP;c:\topaz\single

If you discover that the compiler runs out of memory during the link step, simply put "/L" on a separate
line in the TPC.CFG file, like this:

/Uc:\TP;c:\topaz\single
/L

This causes linking to occur on disk which in turn frees up memory for compiling.

To compile with multi-user units located in a TOPAZ\MULTI sub-directory, the TPC.CFG should look
like this:

/Uc:\TP;c:\topaz\multi
/L

If you have some projects which require TOPAZ single-user units and some which require the
multi-user units we recommend that you place a special TPC.CFG file in those directories to ensure that the

 TOPAZ Introduction 11

compiler links in the appropriate TOPAZ units. The TPC.CFG file should specify the appropriate directory for
the compiler to find the proper TOPAZ units for that project. The compiler will always look first in the current
directory for a TPC.CFG file.

An optional method of compiling, when you don't have a TPC.CFG file or to override the settings in
a TPC.CFG file, is to create a batch file with the following line:

c:\tp\tpc %1 /M /L /Uc:\tp;c:\topaz

If the batch file is called COMPILE.BAT then you would utilize it to compile a program called
MYFILE.PAS by typing the following at the DOS prompt:

C:\WORK>compile myfile

If you are using Borland Pascal you have the options of generating Protected Mode and Windows
applications, in which case you would use the following command lines to compile your programs:

For standard DOS (Real mode) applications:

c:\bp\bin\bpc %1 /M /CD /Uc:\bp\units;c:\topaz

For DPMI (Protected mode) applications:

c:\bp\bin\bpc %1 /M /CP /Uc:\bp\units;c:\topaz

For Windows applications:

c:\bp\bin\bpc %1 /M /CW /Uc:\bp\units;c:\topaz

For more information about compiling and compiler directives please refer to the README file and
your compiler documentation.

 12 TOPAZ Introduction

 TOPAZ Tutorial 13

T U T O R I A L

 14 TOPAZ Tutorial

 TOPAZ Tutorial 15

A SIMPLE EXAMPLE OF FULL-SCREEN
EDITING

All programs that use TOPAZ must include at least one TOPAZ unit. There is a TOPAZ unit of
Terminal I/O routines, a unit to access dBASE files, and so forth. For the simple example here, all we will need
is the SAYGET4 unit, and so the line

uses sayget4;

is required at the beginning of your program.

In this simple example, suppose we are collecting data having to do with a classroom of thirty students,
and we have created a data structure like this:

type student_record = record
 lastname : string[30];
 majorcode : string[3];
 gpa : real;
end;

var student : array[1..30] of student_record;
 i : integer;

Next, we will want to enter the data for each of these students, dBASE-style. First, let's select the colors
for prompts and variable fields using the SET_COLOR_TO statement:

SET_COLOR_TO(LightGray, Black, Black, LightGray);

This will cause prompts to appear as white-on-black, and the variables to be edited in reverse video.
As in dBASE, we can set up the exact characteristics of the full screen edit. In this case, we want our variables
to be enclosed in brackets, we want the bell to ring whenever the field has been completely filled, and we will
set things up so that a carriage return is required at the end of each field. The TOPAZ code for this would be

SET_DELIMITERS_TO('<','>');
SET_BELL_TO(880,2,50);
SET_CONFIRM_ON;

Notice that unlike dBASE, TOPAZ allows you to configure the bell very specifically. In this case, the
bell will sound twice at a pitch of 880 Hz for 50 milliseconds -- much nicer than the bleat associated with <Ctrl-G>

(the terminal bell).

The next part of the code is the loop itself, acquiring the data:

for i := 1 to 30 do

 16 TOPAZ Tutorial

with student[i] do
begin
 name := SPACE(30);
 majorcode := SPACE(3);
 gpa := 0;
 SayGet(10,10,'Name: ',lastname,_S,30,0); REQUIRED;
 SayGet(11,10,'Major: ',majorcode,_S,3,0); PICTURE('!!!');
 SayGet(12,10,'GPA: ',gpa,_R,3,1); RANGE('0.0','4.0');
 ReadGets;
end;

Notice that, just as with dBASE, the variables in the full screen edit must be given a value--not just
declared--for things to work properly. Failure to do so will result in whatever is in memory showing up in your
field areas--you can imagine what that will look like! Strings may be set to '' (the null string). In the example,
however, we have chosen to use the SPACE function in TOPAZ to initialize strings to blanks.

As in dBASE, we need to supply a row and column value. Unlike dBASE, SayGet needs the following
additional information: the simple type of the variable (_S for strings, _R for reals, _I for integers, _L for
booleans, _LI for longints, and so forth). The symbol " _ " used here and throughout the TOPAZ manuals is the
underbar. The field width and number of decimal places must also be specified for all types even when not
applicable.

Also, notice that the example takes advantage of the familiar dBASE PICTURE and RANGE clauses,
with the standard conventions for alphas, numerics, upper case entry, and so on. TOPAZ has added the Required
clause (not present in dBASE), that allows the programmer to force the user to enter data in a field. In this
example, the user cannot go on unless the "Name" field is non-blank. The actual full-screen edit and assignment
of edited values to the variables is done when the ReadGets is executed.

Apart from taking very little time to compile, when the program actually runs, you will immediately get
the "dBASE feel". Notice what happens when you are editing a field and you press the <Ins> key. The cursor
changes from a line to a half-block; all further key strokes will be inserted into the field. Pressing <Ins> again will
cause the program to revert to typeover mode, and restore the normal cursor. Also, notice when the end of a field
is reached, the custom bell you created will sound. The PICTURE and RANGE clauses do indeed keep the data
formatted and bounded as desired. The only thing that gives away the fact that you really aren't running under
dBASE is the speed--the responsiveness of the code is much more lively than dBASE.

EditResult. EditResult is set at the end of all ReadGets calls and indicates the manner in which the
full-screen edit was exited:

-2 : User finished editing with the <Left-Arrow>, <Up-Arrow> or <PgUp> keys
-1 : User finished editing with <PgDn> or ExitRead = True
 0 : User finished editing normally, i.e, with <Ctrl-W>, or by exiting the last

field with <Enter>, <Down-Arrow>, or <Right-Arrow>
 1 : User abandoned editing by pressing <Ctrl-Q>
 2 : User abandoned editing by pressing <Esc> (and if ESCAPE is set ON)
 3 : ReadGets time-out occurred (if enabled)

 TOPAZ Tutorial 17

Thus, testing EditResult after returning from ReadGets allows the programmer to determine whether
to use the variables as edited, or ignore the editing. Note that whenever EditResult is positive a condition exists
that may require special attention.

In the next section, we will read and write data to a dBASE file.

 18 TOPAZ Tutorial

USING DBASE FILES

The previous example will work well to fill 30 Pascal records of data in memory. But what if we actually
wanted to read these records from, or write them to a dBASE file?.

TOPAZ gives you a way to do just that. Suppose we already have a dBASE file, called GRADES.DBF,
with the following structure:

Structure for database: C:grades.dbf
Field Name Type Width Dec
 1 LASTNAME Character 30
 2 FIRSTNAME Character 20
 2 MAJORCODE Character 3
 3 GPA Numeric 4 2

The file which matches this example can be found in SAMPLES.ZIP on the TOPAZ on the TOPAZ
distribution disk(s). In the following section we will show you how to create an empty file with this structure, or
any dBASE file, from scratch.

To handle this file with TOPAZ, we will need to use the unit called DBF4. Hence, our code must now
have the line:

uses SAYGET4, DBF4;

at the beginning of the program.

Next, a one record data buffer ("user record") must be created for each database file to be opened. The
Pascal code to define these buffers is easily created with the MAKEPAS.EXE utility (See the section "Creating
Pascal Structures"). The buffer structure must be carefully matched to the structure of the dBASE file. Since
dBASE supports some data-types that Pascal does not and visa versa, it is important that the programmer either
understand how TOPAZ translates data (from dBASE files to matching Pascal records and back again) or they
always use the MAKEPAS utility to generate Pascal record buffers. The database handling routines (in DBF4)
can not detect errors in the data structures in your programs.

In our example, the data buffer could be defined as shown below:

 TOPAZ Tutorial 19

type student_record = record
 deleted : boolean;
 _lastname : string[30];
 _firstname : string[20];
 _majorcode : string[3];
 _gpa : real;
end;

var student : student_record;

Field names of the record can be of your own choosing. In the example shown the field names match
the dBASE field names except for an additional leading underbar. The leading underbar permits field names like
"byte", "record", or "end" which are perfectly okay in dBASE but are reserved words in Pascal. Also, the use of
leading underbars makes it easy to correlate the two structures, yet easily distinguish between them in your source
code.

Note that we MUST add a field of type boolean, which will correspond to dBASE's hidden 'delete flag'
for every record in the database. There are a number of restrictions and limitations that are a part of the dBASE
file standard and are discussed in the section "Creating and Modifying dBASE Structures - CREATE.EXE".

As in dBASE, we will need to open the file with the USE command:

USE('grades', @student, SizeOf(student));

The first parameter of the call is the name of the dBASE file. USE will supply the default extension
'.DBF' if no extension is supplied. The second parameter points to the buffer you have defined to store data that
is read from the file or written to the file. As we have shown in the above example, this variable must have the
same structure as the dBASE file itself. The final parameter is the size of the buffer. Even though TOPAZ knows
the correct size of the dBASE record when it opens the dBASE file (the record size is in the dBASE file header),
it cannot be certain that the variable you created is exactly the same size. So, TOPAZ will check for you. If
TOPAZ discovers an incorrect size, the program will halt with a descriptive message.

You are now all set to read and write records. A complete working program that will allow file
maintenance of GRADES.DBF is shown on the next page.

 20 TOPAZ Tutorial

Program Grades;
uses Crt, DBF4, SAYGET4;
type
 Student_record = record

Deleted : Boolean;
_LASTNAME : String[30];
_FIRSTNAME : String[20];
_MAJORCODE : String[3];
_GPA : Real;

 end;

var Student : Student_record;
 choice : char;

procedure GetGrades;
begin
 with Student do
 begin
 if deleted then At(10,3,'DELETED') else At(10,3,' ');
 SayGet(1, 5,'LAST NAME..', _LASTNAME ,_S,30,0); PICTURE('@!');
 SayGet(1, 6,'FIRST NAME.', _FIRSTNAME ,_S,20,0); PICTURE('@!');
 SayGet(1, 7,'MAJOR......', _MAJORCODE ,_S,3,0);
 SayGet(1, 8,'GPA........', _GPA, _R,4,2);
 end;
end;

begin {main program block}
 ClrScr;
 Select(1);
 USE('GRADES', @student, SizeOf(student));
 repeat
 GetGrades;
 ClearGets;
 repeat
 GoToXY(2,23);
 Wait_To(' N)ext P)revious T)op B)ottom E)dit A)dd D)elete Q)uit ',

choice);
 choice := UpCase(choice);
 until pos(choice, 'NPTBEADQ') > 0;

 if dEOF and (choice = 'E') then choice := 'A';
 case choice of
 'N' : if not dEOF then Skip(1);
 'P' : if RecCount > 0 then Skip(-1);
 'E' : begin

 GetGrades;
 ReadGets;
 Replace;
 end;

 'A' : begin { add a blank record and enable editing it }
 ClearRecord;
 GetGrades;
 ReadGets;
 Append;
 end;

 'D' : if Student.Deleted then RecallRec else DeleteRec;
 'T' : GoTop; { position database at first record }
 'B' : GoBottom { position database at last record }
 end;
 until choice = 'Q';
 CloseDatabases;

 TOPAZ Tutorial 21

end.

 22 TOPAZ Tutorial

This program illustrates how to read and write records to the database file, how to display those records,
how to set up a simple one-line looping menu (using the WAIT_TO syntax), and how to move up and down
through the file (using the SKIP syntax). In fact, almost all the elements necessary to maintain a simple database
are present in this short code illustration.

In many applications, this code, or a variation of it, is all that is required to maintain a database. In a
later section we describe the MAKEPAS utility that generates fully working Pascal code, similar to the code
above but with many more "bells and whistles", starting from just a dBASE file.

 TOPAZ Tutorial 23

CREATING AND MODIFYING DATABASE
STRUCTURES - CREATE.EXE

Every dBASE file has file header information that completely describes the field structure of each
record. Before you can even open a dBASE file (with USE), the file must have been previously defined by
CREATE.EXE or with dBASE.

If you already own dBASE, the CREATE command will be old hat. If you don't own dBASE, or don't
wish to use dBASE, TOPAZ allows you to create DBF files with its CREATE.EXE program. Files produced by
CREATE are identical to dBASE III+ generated files in every way. TOPAZ's CREATE very closely emulates
dBASE's CREATE, except that it is a stand-alone program. From DOS enter

C> CREATE [<filename>]

There is no need to specify the default DBF extension of the filename, as CREATE will do this for you.
However you may use any file extension you wish. Once in CREATE, you can enter the description of each field:

Name. The name of the field, up to 10 characters in length. To be compatible with dBASE, field names
must start with an alphabetic character, and the rest of the name can be composed of letters, numbers,
and/or underbars.

Type. The type of the field. The available field types are: CHARACTER, NUMERIC, DATE, LOGICAL, and
MEMO. At this point in CREATE, only the first character you type is important. Obviously types in
dBASE are much more restrictive than in Pascal, but the general idea is that Character = string types,
Numeric = integer, word, longint, byte and real types, and logical = boolean type. There is no date type
in Pascal, so TOPAZ considers this to be a type string[10].

Width. The width of the field in bytes, for Character and Numeric fields. The width is automatically set
to 8 for dates, 1 for logical, and 10 for memo. Numeric widths are limited to 19 digits, and include the
decimal point if decimals are specified. Character fields are limited to 254 characters.

Dec. The number of decimal places for numeric types.

You are free to define up to 128 fields. CREATE presents up to 30 of these field descriptions on the
screen at any one time.

Special keys in CREATE are:

<Ctrl-N> - Insert a field
<Ctrl-U> - Delete a field
<Ctrl-End> - Exit (with save)

 24 TOPAZ Tutorial

<Esc> - Abandon (no save)
<F5> - Go to first field
<F6> - Go to last field

In addition to <Ctrl-End>, you may also press <Enter> on a blank field at the end of the list, signifying the
definition process is complete. An empty database file will then be written to disk.

You can also use CREATE.EXE to modify the structure of an existing database. Modifying the structure
does not necessarily destroy or disturb the data in the file. Depending on the changes to the structure of the file,
data will automatically be copied from the old structure to the new structure. Care should be exercised when
modifying databases which contain valuable data to be sure that no important data is lost. For example, when
adding a field to a database structure, do not also change the name of any of the other fields since the data for
those fields will not be copied into the new file. If you do not change the physical structure of a file you may
change the name of a field without any loss of data. When a DBF file is modified by CREATE, the old file is
renamed with a .BAK extension, while the memo file is renamed with a .TBK extension.

 TOPAZ Tutorial 25

CREATING PASCAL STRUCTURES AND
PROGRAMS - TEMPLATES - MAKEPAS.EXE

In an earlier section we stressed the importance of creating a Pascal record to exactly match the structure
of the dBASE file you wish to work with. Many times this is an easy coding task, but TOPAZ comes with a
utility, MAKEPAS, to write this code for you.

MAKEPAS allows you to specify a dBASE filename, and whether you want an INCLUDE file, UNIT,
or a complete Pascal PROGRAM to manage the file. The dBASE file must already have been created. See the
previous section on creating a dBASE File.

If you tell MAKEPAS to create an include file, it creates <filename>.INC and will contain the necessary
TYPE and VAR declarations you will need to work with the rest of TOPAZ's procedures and functions. Using
MAKEPAS in this way will save you time and effort, and of course is error-free.

Programs generated by MAKEPAS will be called <filename>.PAS, and will be complete stand-alone
programs to Add, Edit, Delete, Locate, and browse through your database. The code generated by MAKEPAS
is similar to the simple example of the previous section, but with additional features and comments. Use
MAKEPAS to learn TOPAZ programming techniques, modify the code to your liking, incorporate the code into
your application, or just compile and run it without further ado. In any of these cases, the speed with which your
application will go from no code at all to a finished and flawless program should surprise you.

Units generated by MAKEPAS will be called U<filename>.PAS. For example, if your database is
named CLIENTS, the unit will be called UCLIENTS.PAS. This source code can be compiled to
UCLIENTS.TPU, and has a public procedure to maintain the database.

MAKEPAS uses template file technology. That is, MAKEPAS writes its output based on "skeleton"
code found in ASCII input files, called "templates". These templates may generate programs and units or just
code fragments. TOPAZ is delivered with a starter set of templates to permit you to generate structures, units,
and entire programs right away.

MAKEPAS looks in the following places and sequence to determine the location of the TOPAZ
template files assuming no parameters on the command line:

1. Current directory.
2. Directory specified in MAKEPAS.CFG file located in current directory.
3. Directory where MAKEPAS.EXE is located (DOS 3.1 or later).
4. Directory specified in MAKEPAS.CFG file located where MAKEPAS.EXE is.
5. Path specified in MAKEPAS.CFG file located on path.
6. First directory on the path which contains INCLUDE.TEM.

 26 TOPAZ Tutorial

It is also possible to specify a database and template on the MAKEPAS command line, using this syntax:

C> MAKEPAS <template> <database>

for example: C> MAKEPAS INCLUDE.TEM MYFILE.DBF

NOTE: If the template contains the line .GETDATABASE then the user will still be prompted for a
database from the current directory.

It is not necessary to know anything else about these templates to get started, thus you may skip over
the rest of this section if you wish. However, you will soon be interested in making your own templates to
generate code your way. When you are ready, the following discussion documents how you can make templates
to suit your own tastes.

Through the use of macros and dot commands a template may tailor a program to fit most database
situations.

Although templates, databases, and keyfields may be specified (in that order) on the MAKEPAS
command line, normally templates should have the .TEM extension so that they will be visible in the pick window
when the user is prompted for a template name.

A macro is defined as a string immediately preceded and followed by ampersands (&). For instance,
when the macro &DbfName& appears in the template, MAKEPAS will replace it by the name of the database.
Macro vars that are not understood are ignored and may produce code that will not compile without modification.

Whenever a macro is encountered in the template by MAKEPAS it will be replaced by the current value
of that macro variable. Macros may be placed anywhere but will not be processed if they are inside a comment
block defined by .COMMENT and .ENDCOMMENT. Two special macros, &DATATYPES& and
&SAYGETS&, will generate blocks of code and therefore should be used with care. These two macros should
be on lines of their own, separate from other code.

Dot commands are your way of directing the behavior of MAKEPAS in various ways. Whenever a dot
command is encountered it will be first checked for proper syntax (if it has any required parameters) and then
executed. Through the use of the .INCLUDE command, other templates or straight blocks of code may be
inserted. At the end of an INCLUDEd template, control will be returned to the calling template. There is no
practical limit to the nesting of INCLUDEd templates. The current database may be changed at any time with
the .GETDATABASE command. All following macros will be based on the name and fields of the new database

See the sample templates, PROGRAM.TEM, UNIT.TEM, and INCLUDE.TEM for examples of
template construction. You may modify the samples to your taste or write your own. Programs generated by
templates will only compile properly if the template generates a valid program according to the rules of Turbo
Pascal.

Templates for MAKEPAS may use any of the following macros and dot commands:

 TOPAZ Tutorial 27

AVAILABLE MACROS:

&DbfName& = replaced by current database filename without extension
&UnitName& = dbfname shortened to maximum of 7 characters

&KeyField& = field name of index key

&KeyfieldLen& = length of key field

&KeyfieldDec& = decimals value of key field

&KeyfieldType& = type of key field (C,D,N,L,M)

&DataTypes& = causes database structure types and vars to be inserted

&SayGets& = causes a block of SayGets based on the fields in the current database to be inserted.

The screen column and starting screen row may be defined with the dot commands
.COLUMN and .ROW. The block of source code will be indented the same number
of spaces as the occurrence of the macro. If the .COORDINATES command has
been used to change the coordinates system to dBASE, all following SayGets will
use dBASE coordinates.

&MakeFile& = causes a procedure to be written to the output file which will create a database with
the same structure as the database used to generate the current program.

AVAILABLE DOT COMMANDS

(must be immediately preceded by a dot and on a line by itself)

.Comment = following lines are omitted from output file until EndComment

.EndComment = end of omitted lines

.Coordinates <pascal> = specify Pascal or dBASE coordinates for SayGets

.Row <nn> = define starting row for SayGets

.Column <nn> = define column for SayGet statements

 28 TOPAZ Tutorial

.Include "filename" = specify a nested template file

.Outputname "filename"= inform MAKEPAS of the desired output file name

.GetOutputName = MAKEPAS will ask user for the name of the output file

.GetKeyField = MAKEPAS will ask user to select a key field from database. Optional

string (in double quotes) will become header to a pick window

.GetDatabase = MAKEPAS will ask user to select a database.

NOTE: Each template must use a dot command to ask the user for a database. There is no logic in
MAKEPAS to ask for what it does not currently have when presented with a macro.

 TOPAZ Tutorial 29

INDEXING DATABASES

Previous sections of this manual have described how to write programs to input data from the keyboard
and then put that data in databases. In many applications the "natural" order of the data in the database is not very
convenient such as when you want to find a particular record or output the data in sorted order. Such applications
require that you create one or more index files for a database.

TOPAZ allows you to index any database file that is opened with the USE command and selected with
the SELECT command. You may index the database with any combination of data from the fields in the database.
TOPAZ closely follows the dBASE syntax for indexing, but the IND files created are not compatible with dBASE
NDX files.

The current version of TOPAZ makes use of a simple binary search method to create and maintain an
index. These trees are created very nearly balanced and will perform very well. However, since binary search
trees are not self-balancing, as new records are appended or key fields are changed, it is possible to grow an
unbalanced tree if the data you are adding is already in a somewhat sorted order. An example of this is a file of
journal transactions indexed on entry date. In this case you would typically be adding records that are already in
key order, resulting in an unbalanced tree. The consequence of an unbalanced tree is degradation in overall
performance. The solution to this is to re-index the databases after an appreciable number of records have been
edited or added to the file. Re-indexing will restore the tree's balance.

To create an index, you must do the following:

Supply the TOPAZ units DBF4 and INDEX4 on the uses line.

USE a database file. A database file must be open and currently selected.

Write a function to create index keys. Index keys may be created using any field, portion of a field, or
combination thereof, from the currently selected database. Regardless of the origin of the data contained in the
key the key itself must be of type STRING. The function must always return the same length string regardless
of the specific contents of the record (returning the TRIM of a field is an error). Last but certainly not least, the
function must be declared FAR, and cannot ne nested in another procedure or function.

Call the procedure MakeIndex indicating the address of your FAR function that returns key strings, and the
name to be used for the index filename.

In the example below, we will index a database file, GRADES.DBF, containing data about a class of
students. Two of the fields are "_LASTNAME" and "_FIRSTNAME", and we want to index the file with a key equal
to the concatenation of these two fields. Furthermore, we wish the index to be case insensitive. The code to
accomplish this is:

 30 TOPAZ Tutorial

{$F+}
function KeyString : String;
begin
 with Grades do { current database record }
 KeyString := UPPER(_Lastname + _Firstname);
end;
{$F-}

begin {main body of program or procedure}
 USE('Grades', @grades, SizeOf(Grades));
 MakeIndex(@KeyString, 'Grades');
 SET_INDEX_TO(@KeyString,'Grades',1);
 ...
end;

The USE command opens a file called GRADES.DBF and refers to the Pascal record variable grades.
The MakeIndex command requires a pointer to the FAR function KeyString, and an index filename (in this case
GRADES.IND). In this example, the function KeyString simply concatenates two fields in the grades record and
converts the result to uppercase. If you wish to monitor the progress of MakeIndex, you can call the command
SET_ODOMETER_ON prior to the call to MakeIndex. With odometer set ON a counter showing the percentage
of records indexed will be written to the monitor during indexing. MakeIndex does not actually open the resulting
index for use. You must then call SET_INDEX_TO as shown. You will be left with the index open as the primary
index.

NOTE: Instead of using MakeIndex and SET_INDEX_TO you could equivalently use the dBASE
syntax INDEX_ON which first closes all open index files for the database in the currently selected work area, then
creates the index and opens it as the primary index.

The result of this program fragment will be the creation of the index file GRADES.IND. Once the index
file is created, the database file can be accessed in indexed order based on the index key, and records can be
found without any sequential searching. It is necessary to create the index only once as subsequent use of the
index is achieved by calling the SET_INDEX_TO procedure.

To USE a database file with an existing index, your program can call the SET_INDEX_TO command.

The default extension of a TOPAZ index file is .IND but if a different extension is specified when
creating the index it also must be specified when calling the SET_INDEX_TO command:

USE('grades', @grades, SizeOf(grades));
SET_INDEX_TO(@KeyString, 'grades', 1);

The reason you must pass the address to your key making function is so TOPAZ can automatically
update the index file when records are added or edited. You can open up to 16 indexes for each database just by
specifying the "order" parameter. If the order is 1, the index is primary meaning that the database will be in the
order of the index key. If the order is 2..16, the index is secondary, meaning that the index will be updated as the
database is altered, but the visible order of records will not be affected.

 TOPAZ Tutorial 31

Now that your database has been indexed, you may position the datafile to any record by means of the
FIND command. In the example below, the user is prompted for the name of a student:

SayGet(10,10,'Enter first name: ',Mfirst,_S,16,0);
SayGet(10,11,'Enter last name : ',Mlast, _S,16,0);
ReadGets;
key := Upper(Mfirst + Mlast); { cannot use Function KeyString here since

these are not field variables}
FIND(key);

The GRADES database will now be positioned at the record that matches the key, if found. If the record
was not found, the position of the database is set beyond the end-of-file, and the global boolean Found is set to
False. In our example, we would test Found as follows:

if not FOUND then
 WAIT(key+' not found! Press any key to continue...')
else

Note: The value of Found will not change until the next FIND command.

The default mode for FIND is to allow finds to be successful when specifying full or partial keys. This
is the mode achieved with SET_EXACT_OFF which means that a FIND is successful if characters in the index
key match those in the string specified in the FIND(key) command regardless of the length of that string. For
example, if the database key consists of Upper(Lastname+Firstname) then the commands:

FIND('SMIT');
FIND('SMITH');
FIND('SMITH LARRY');

will all find "SMITH LARRY". On the other hand, if you invoke the command SET_EXACT_ON, then the
length of the FIND string must match the key expression for the full length of the formal key expression originally
used in creating the index. In other words, the parameter to find must be the same length as the keylength of the
index.

Of course this presumes that the user has a notion that LARRY SMITH is in the database, and that
LARRY SMITH is the correct spelling. If the data record is actually MARY SMITH, however, FIND will not
be of much use in positioning the database. In such instances, you will want to take advantage of TOPAZ's
FindNear routine. FindNear is a "soft" form of FIND, in which the database is positioned to the key, if found,
or to the record that is closest with the next greater key. For example, FindNear('SMITH LARRY') will
return Found = False, but will position the file on MARY SMITH.

 Normally, TOPAZ indexes a database file in ascending alphanumeric order with respect to it's key
maker functions. As we have shown, records can then be found by FINDing based on a key. This is ordinarily
precisely the way you want things to work, of course. A common indexing key is something like LASTNAME
+ FIRSTNAME, where your application permits the user to enter a name in order to find records associated with
that name. The problem that arises is that the user often misspells the name (or is unaware of the proper spelling).

 32 TOPAZ Tutorial

Normal indexes are not prepared to handle that situation, so your program conclude that the record does not exist
and sadly must inform the user that "so-and-so not found."

SOUNDEX is a solution to this problem, permitting you to find records in a DBF based on the phonetic
sound of a key. For example, suppose you have the following name in your database: JUDY NEIL. You permit
the user to find records by name, but of course they type in JUDY NEAL, or JUDITH NEIL, or JUDI NEELE,
or...well, you get the idea. With ordinary indexing, and FIND, all you wind up with is "record not found". Even
FindNear won't help all that much. With the SOUNDEX method, you would land on record JUDY NEIL.

All you have to do is add the clause SOUNDEX to the index filename when creating and opening
indexes, like this:

MakeIndex(@keymaker,'Names.ind SOUNDEX');
or

INDEX_ON(@Keymaker, 'names.ind SOUNDEX');

and
Set_Index_To(@keymaker,'Names SOUNDEX',1);

Keys passed to the FIND and FindNear procedures for that index will be converted to SOUNDEX
strings automatically. This means that you don't need to do anything new or different with your key making
functions!

A few things to watch out for when using the SOUNDEX clause: It is an error to specify SOUNDEX
when creating an index and to not specify it when opening that index later (or visa versa). Also, SOUNDEX
indexes will not be in alpha order..they are in a funny phonetic order. So you will probably want to maintain two
index files: one on the alpha key, and one on a SOUNDEX key (which can share the same Keymaker function).
Here is an example:

USE('customer', @customer, SizeOf(customer));
Set_Index_To(@LastName, 'Names',1); {alpha order, primary}
Set_Index_to(@LastName, 'NamesSX SOUNDEX', 2); {soundex order, secondary}
.
.
{then, after prompting the user for a name to find:}
FIND(KeyName); {try looking for the literal name}
if not Found then
begin {oops, key not there. try SOUNDEX:}
 SET_ORDER_TO(2);
 FIND(KeyName);
 if not Found then
 begin {getting desperate, maybe we should try FindNear!}
 .
 .
 end;
 SET_ORDER_TO(1); {restore the order if you like}
end;
if Found then ...

 TOPAZ Tutorial 33

Our experiments have shown that 1) many names have lots of potential plausible spellings (probably
a fact already known to you given experience with your own name!), and 2) SOUNDEX finds the correct record
in a remarkably large number of cases.

NOTE to users upgrading from TOPAZ version 3.0: In TOPAZ version 3.0 Soundex was implemented
using a 4-digit resultant code. This had a tendency to result in FINDs that were unexpected. Since TOPAZ
version 3.5 Soundex conforms to the more standard method of using the first character of the key plus a 3-digit
code. Your code will not have to change to take advantage of this change. However, you will have to re-build
any index that is based on a Soundex key! The best way to do this is to erase the Soundex IND file and permit
your program to create the index file.

Apart from normal ordering and SOUNDEX ordering, TOPAZ also permits you to index a file in
descending order (from greatest to least). This can be done by adding the DESCENDING clause to the index
filename when creating and opening indexes:

MakeIndex (@Key, 'name DESCENDING');
or

INDEX_ON (@Key, 'name DESCENDING');
and

SET_INDEX_TO (@Key, 'name DESCENDING', 1);

When would you use descending indexes? Consider a file of transactions in an accounting system indexed on
the date of the transaction. When viewing the file, the user will probably be most interested in the most recent
transactions, and would want to see them first. This would be a good candidate to add the DESCENDING clause
to your index file.

Speaking of sorting on dates, it is important to realize that dates in TOPAZ are actually strings. So, we
would find that '01/01/90' is "earlier" than '12/31/89', if our key maker function just returned the raw date. To be
indexed properly, key maker functions should use the CTOD function in TOPAZ, like this:

{$F+}
FUNCTION DateIndex : String;
begin
 DateIndex := CTOD(patient._BIRTHDATE);
end;

Here, the DateIndex key maker will return a string that will cause the TOPAZ index to sort in true
chronological order.

When you add a record to the database file using the APPEND command, TOPAZ will automatically
update all open index files in the selected area.

If any of the fields that comprise the key expression are edited and replaced in the database, TOPAZ
will automatically update all of the open index files in the selected area.

 34 TOPAZ Tutorial

When a primary index is active (i.e., when an index is created or SET with order = 1), the SKIP, GoTop,
and GoBottom commands will position the database in index order. The function dBOF will return True if an
attempt has been made to go past the beginning of the file in indexed order. Similarly, dEOF will return True if
an attempt has been made to go past the end of the file in indexed order.

An optional command for indexing files is MakeIndex which will create an index but does not leave the
index open. This command is useful when creating multiple indexes for a database. After creating an index with
MakeIndex you must open that index by calling
SET_INDEX_TO.

Example: USE('Grades', @Grades, SizeOf());
MakeIndex(@key1, 'Grades1.IND);
MakeIndex(@key2, 'Grades2.IND);
SET_INDEX_TO(@key1, 'Grades1.IND',1);
SET_INDEX_TO(@key2, 'Grades2.IND',2);

Finally, the TOPAZ DisplayStatus routine will report whether an index is ascending, DESCENDING, or
SOUNDEX.

 TOPAZ Tutorial 35

DIALOG BOXES

One of the most common tasks a programmer must address is the display of a message, followed by
waiting for a keystroke response from the user. As a simple example, suppose you have prompted the user for
a filename of a file to save. Of course you check to see if the file already exists, since the user may be unaware
they are going to overwrite a file that is already there. If in fact the file exists, you want to warn the user, and
determine if it really is ok to overwrite the file.

One way of doing this is:

if FileExists(name) then
begin
 WriteLn('Hey! '+name+' already exists! Overwrite?');
 Readln(OverWrite);
 if OverWrite='N' then exit;
end;

The above code would produce an ugly display, and of course the ReadLn procedure doesn't guarantee
you get back an upper case N or Y, or anything else for that matter. Too crude. A better way would be to use a
call to SayGet:

if FileExists(name) then
begin
 OverWrite := False;
 SayGet(10,10,'Hey! '+name+' already exists! ' +

Overwrite?', OverWrite,_L,1,0);
 if not OverWrite then exit;
end;

At least this will position the message (although you still have to compute where a good place would
be), initialize OverWrite to a default, and only permit one of two possible responses. Of course you will need
to clean up the screen after all this, no matter what the response. And what if you wish to permit other responses,
like <Enter> or <Esc> ?

The answer to all this is to use TOPAZ's Dialog Boxes. The above example could be handled with the
following:

if FileExists(name) then
 if DialogBox('Hey! '+name+' already exists!
 Overwrite?', 'yn'#13#27) in ['N', #27] then exit;

The DialogBox function returns only the uppercase keystroke the user pressed of the set of permitted
keys (as listed in the second parameter of the function call). The function will not return until a permitted key
is pressed. In this way, you can specify 'Y's or 'N's, and also <Enter> (#13) and <Escape> (#27). The first parameter
to the call is the string you wish displayed. But displayed where? DialogBox will automatically save the existing

 36 TOPAZ Tutorial

screen, display the message in a box centered on the screen, and will restore the screen after the user has pressed
a key.

Another application requires that you display a message, and wait for any keystroke. DialogBox is
perfect for that job too:

c:=DialogBox('Load Printer with special forms. Press any key to continue.','');

Note that the empty string is used by DialogBox to mean "any key". If your message requires more than
one line to state, DialogBox recognizes the dBASE convention that semicolons are treated as a "new line"
character. The next example illustrates this:

c:=DialogBox('Load printer with 1040EZ forms.;'+
'Press any key when ready... CENTERTEXT','');

This example also shows the uses of the special clause CENTERTEXT. DialogBox normally left
justifies all lines in its boxed area. CENTERTEXT permits you to center them instead. The above message
would look as follows on the screen:

+))))))))))))))))))))))))))))))))),
* Load printer with 1040EZ forms. *
* Press any key when ready... *
.)))))))))))))))))))))))))))))))))-

In another kind of dialog, you may want to prompt for information (rather than a single key response).
The global variable DialogRow permits you to combine the features of DialogBox with SayGet and ReadGets,
as shown in this example:

c := DialogBox('Please enter a file name to use:;', StayOn);
SayGet (34, DialogRow + 2, '', NewFile, _S, 12, 0);
ReadGets;
RemoveDialogBox;

Notice that DialogRow returns the upper row at which the DialogBox is drawn, and can be easily
referenced by SayGet to place fields inside the DialogBox. The presence of the semicolon (';') in the DialogBox
string is very important here: it forces DialogBox to add a blank row to its display. It is this blank row that
SayGet will fill in. The resulting dialog will appear on the screen like this:

+)))))))))))))))))))))))))))))))))),
* Please enter a file name to use: *
* *
.))))))))))))))))))))))))))))))))))-

By default, Dialog Boxes are shown in single line boxes in monochrome colors. You can use
Set_DialogWindow_To and Set_Dialog_Color_To to tailor the appearance of DialogBox to suit your needs.

 TOPAZ Tutorial 37

The DialogBox routine is perhaps the single TOPAZ routine called the most often in an application.
It is not unusual for a major application to call DialogBox many hundreds of times! Here are some additional
features making DialogBox even more practical and convenient.

Timeouts. DialogBox supports timeouts. Imagine putting up a DialogBox that requires a response
from the user, but you don't feel like waiting forever. By adding the TIMEOUT clause to the message parameter,
you can specify the maximum time in seconds before DialogBox returns:

Result := DialogBox('Your message here. TIMEOUT=10', '');

Instead of waiting indefinitely for a keystroke, DialogBox will timeout in 10 seconds. Of course the
TIMEOUT clause will not be displayed. DialogBox will return an empty string (binary zero) when a timeout
occurs.

Special Attributes. DialogBox supports combinations of attributes for words or phrases in your
dialog message. For example, suppose your message is "Insert a floppy disk now." and you want
the word "now" to blink. This is easily accomplished by framing the word "now" with the reserved chars Flash
(#4) and EndFrame (#0), like this:

DialogBox('Insert a floppy disk '+ Flash +'now'+ EndFrame +'.', '');

The word "now" will blink. In fact, everything from the Flash byte to the EndFrame byte will blink,
even if they extend over multiple lines:

DialogBox('If I told you once, I told you 1000 times,;'+
Flash + 'Insert the floppy disk; now'+ EndFrame, '');

Recall that a semicolon (;) in a message string is really a new-line signal, so that "Insert the floppy disk"
and "now" are on separate lines. Both lines will be blinking.

The complete set of special attributes are:

Bright 1
Dim 2
Highlight 3
Flash 4
Reverse 5
EndFrame 0

where Bright attempts to make the foreground color high intensity, Dim attempts to make the foreground color
low intensity, Highlight sets the text color to the colors specified in the most recent call to Set_Highlight_To,
Flash will cause blinking, and Reverse will swap foreground and background colors. EndFrame is required to
disable whatever special attribute was enabled and go back to the default colors.

 38 TOPAZ Tutorial

You can use any combination of these attributes you like. For example, suppose we don't just want
blinking--we want bright blinking. We only need to combine our attribute bytes, like this:

DialogBox('Press any key '+Bright+Flash+'now'+EndFrame, '');

One more example, showing a change of colors (assume the default DialogBox colors of LightGray on
Black):

Set_Highlight_To(White, Red);
DialogBox('Press'+Highlight+' Esc '+EndFrame+'now', '');

Although the DialogBox and the words "Press" and "now" will be in a dull LightGray on Black, the
word " Esc " will be set off nicely in White on Red.

Function key returns. DialogBox supports the return of function keys. These are denoted in the
second parameter of DialogBox by their extended key code + 128, like this:

Response := DialogBox('Press F1 to continue, Esc to cancel', #27#187);

Pressing <F1> will set Response to #187. Why? Because the extended key code for <F1> is 59, and
59+128=187. You can use the predefined constants F1..F10, SF1..F10, AF1..AF10, CF1..F10 in the following
manner:

Response := DialogBox('Press F1 or F2', char(ord(F1)+128) +
char(ord(F2)+128));

Buttons. DialogBox supports button choices. The syntax is very simple and flexible:

Response := DialogBox('Buttons are better, right?',
 'BUTTONS=Yes No Maybe');

Notice that we have used the second parameter not to supply a list of permissible response characters
(such as 'ynm'), but to specify that we want buttons, and what the buttons should say. When the DialogBox runs,
a row will be reserved for a list of horizontally laid out buttons. The highlighted button will have a shadow that
is made of 1/2 block characters. The cursor keys will move the shadow and highlight each choice, just like a
moving-bar menu would. In addition, the <Space-Bar> also cycles through the choices. Pressing <Enter> on choice,
or the first letter of the choice, will cause DialogBox to return the first letter of the choice (in uppercase). If the
user presses <Esc>, DialogBox will return #27. The color of the buttons is set by a call to Set_Button_Color_To
(see page 487), and permits you to specify the colors of the highlighted and un-highlighted buttons. If you would
like to create button choices made up of more than one word, simply separate the words that are to be grouped
together with #255 instead of blanks. If you would like the buttons to behave exactly like a moving-bar menu
(i.e., without shadows), you can set the global boolean FancyButtons to False.

Predefined "Press any key". A very large fraction of calls to DialogBox look something like this:

 TOPAZ Tutorial 39

DialogBox('Read this message.;Press any key... CENTERTEXT', '');

As a convenience, you can optionally ask TOPAZ to display "Press any key..." for you in specialized
ways:

DialogBox('Read this message.', PressAnyKey);

or: DialogBox('Read this message.', BlinkPressAnyKey);

or: DialogBox('Read this message.', ScrollPressAnyKey);

The predefined constants shown above have the following effects:

PressAnyKey 2 Causes the phrase "Press any key..." to appear centered on the
bottom line of the box.

BlinkPressAnyKey 4 As above, but blinking.

ScrollPressAnyKey 3 As above, but scrolls right to left.

Once you begin using Dialog Boxes you will find them extremely convenient to use in your validation
routines, help messages, and through your application. DialogBox guarantees a consistent look and interface that
the end user will readily appreciate.

 40 TOPAZ Tutorial

PROGRESS BARS

Almost every database application has some task that processes all the records in a file. Although
TOPAZ allows you to display a rotor that spins whenever database records are being accessed (see
Set_Rotor_On, etc.), the user cannot judge how fast the process is going, or how long it will be before the process
is over.

An example that comes to mind right away is printing a hard copy listing of the records in a file. Once
the report begins, the user can only guess if the printer will be busy for 1 minute or 1 hour. To solve this
problem, TOPAZ permits the programmer to pop up a "progress bar" at the start of a process. The progress bar
is a horizontal boxed area, with a bar that begins on the left of the box and grows in proportion to the number of
records processed until the box is filled, at which time the process is complete. A glance at the progress bar
instantly communicates to the user what fraction of the job is done, and qualitatively how much longer the job
is going to take.

To invoke a Progress Bar, you only need one line of code: Set_Progress_On. As a simple example:

Set_Progress_On;
ReportForm('myreport TO PRINT');
Set_Progress_Off;

In another example, the program processes each record in a file:

GoTop;
Set_Progress_On;
while not dEOF do
begin
 ...
 SKIP(1);
end;
Set_Progress_Off;

In each of these examples, the Progress Bar will take on the following appearance:

+))))))))))))))))))))))))))))))))))))),
* *
.)))))))))))))))))))))))))))))))))))))-

Here, about 50% of the task is complete.

Set_Progress_On uses the Ascii "half block" character (#221 = %), to build the progress bar. This has
the result of making the bar grow more often and hence more smoothly. However, you are free to assign any
other character to the bar character by re-assigning the global char ProgressChar.

 TOPAZ Tutorial 41

Progress bars can also be adorned with a percentage scale, just by adding the clause WITHSCALE to
the header of the progress window. An appropriately sized scale will be drawn below the bar, showing
percentage complete. For instance:

+))),
* *

* 0@@10@@20@@30@@40@@50@@60@@70@@80@@90@@100% *
.)))-

The Progress Bar routine automatically saves and restores the screen for you. You can control the size,
location, color, and bar character of Progress Bars, as well as the box style and a heading string with calls to
Set_Progress_Color_To and Set_ProgressWindow_To.

 42 TOPAZ Tutorial

BROWSE

BROWSE is one of the most useful procedures in TOPAZ. It allows you to easily view, edit, delete, and
append records to any open and currently selected database with just one line of code. Invoking BROWSE causes
records to be displayed horizontally, i.e., one record per line. You can move up and down--from record to record,
or side to side--from field to field, thus navigating to any desired record and field. In a sense, BROWSE presents
a 2-D "spreadsheet" view of the database.

The simplest example of BROWSE is the following program:

uses DBF4, BROWSE4;

begin
 USE('customer', NIL, 0);
 BROWSE(' ');
end;

This will open a database file and browse all fields of the database in its natural record order. Using the
cursor keys moves you from field to field and record to record. Notice that BROWSE will "pan" left and right, and
scroll up and down (providing the database is "wider" and "deeper" than one screen). You can edit any field,
including memo fields, by either pressing <F2>, or by simply typing new data into the cell. Editing a memo field
will cause a editor window to open in the half of the screen that will not obscure the current record. Memos that
have contents in them will appear in the BROWSE cell as the uppercase word "MEMO", while empty memos
appear as the lowercase word "memo".

Any record can be marked for deletion by pressing <Ctrl-U>. Such records will appear with a red
background (on a color monitor), and the word "Del" will appear on the status line near the bottom of the screen.
Pressing <Ctrl-U> on a "deleted" record will recall (undelete) the record. Additional commands are: <F3> will
APPEND a new record, <F4> will PACK the file, and <F5> will prompt for a record number to reposition the file.
The next two function keys are not implemented in the above example: <F6> lets you search on a key field if a
corresponding index file is open, and <F7> permits modification of BROWSE's behavior. Finally <F8> will search
all fields for the contents of a given string, and if you can't remember these function keys, then pressing <F10> will
display a moving-bar menu that also includes some additional choices. To exit the BROWSE procedure, press
<Esc>.

The string parameter passed to BROWSE permits you to configure which fields are displayed, the order
they are displayed in, and what operations are permitted during BROWSE. The parameter you pass is actually
a command line of clauses concatenated together. The clauses are:

FIELDS < [fieldname list] >. Only the database fields specified in the fieldname list enclosed in square
brackets are displayed, and they are displayed in the order listed. For example:

BROWSE('FIELDS [FirstName, LastName, ZipCode]');

 TOPAZ Tutorial 43

will display the fields FIRSTNAME, LASTNAME, and ZIPCODE in that order.
Note: field names are the names of the dBASE fields (as created), NOT necessarily the field names in

the users-record Pascal data structure defined for that database. BROWSE will ignore any invalid field names
(rather than generate an error). If the field name is preceded with a minus sign, BROWSE will not permit editing
of that field. An example of this is:

BROWSE('FIELDS [-SocSecNum, -LastName, JobTitle]');

Here, BROWSE displays the three fields listed but will not allow the fields SOCSECNUM or LASTNAME

to be edited.

BROWSE normally displays the dBASE name of each field specified on a row above the data. In many
applications you will want to display column headings that are longer or more "friendly" than the actual field
names. You can assign substitute field descriptors in the FIELD clause by following the actual field name by an
alias name in double quotes. And example of this is:

BROWSE('FIELDS [Cust_Name "Customer Name", Cust_ID "Code"]');

This will cause BROWSE to display the data in fields CUST_NAME and CUST_ID, but will label the
columns "Customer Name" and "Code".

LOCK <n>. Used to specify a contiguous number of fields on the left of the screen which are fixed and
independent of screen panning. For example:

BROWSE('LOCK 2');

will cause BROWSE to always present the first two fields on the left side of the display. All other fields will pan
left and right.

NODELETE. Inhibits the user from deleting or recalling records.

NOPACK. Inhibits the user from packing the database.

NOAPPEND. Inhibits the user from appending records to the database.

NOMODIFY. Inhibits the user from editing any field of any record, deleting, recalling, or appending
records, or packing the file. In other words, the file is guaranteed to not change during the BROWSE
procedure.

NOFOLLOW. This clause pertains to files with an open primary index. Editing a key field with an
index open can change the order in which the file is displayed. By default the display will remain on the
edited record--which can move the record pointer to a completely different part of the file, or by

 44 TOPAZ Tutorial

specifying NOFOLLOW the display instead stays with the existing group of records (in which case the
edited record can vanish from the current screen display).

NOMENU. Inhibits the display of the menu if <F10> is pressed.

NOSTATUS. Inhibits the display of the BROWSE status line.

NOPROMPT. Inhibits confirmation and warning messages that normally appear on the bottom row
of the browse window.

FREEZE <FIELDNAME>. Editing is restricted to the field specified, although you may still pan the
display left and right to view the entire record.

COMMAND. Permits the user to modify the BROWSE command line while in BROWSE, by
pressing the <F7> key. When <F7> is pressed, a command window is displayed with the current
BROWSE command line, which can then be edited. Control is returned to BROWSE after the edit is
completed. This option can be used by the programmer while developing code to experiment with the
command line without the need to rewrite or recompile source code.

A complex example of BROWSE is shown in the segment of code below:

USE('Customer', @Customer, SizeOf(Customer));
SET_INDEX_TO('Customer' @LastNameKeyMaker, 1);
SET_FILTER_TO(@FilterFunction);
BROWSE('FIELDS [LastName FirstName -SocSecNum City State Zip Phone]

 LOCK 2 NOAPPEND');

This will produce a highly tailored and selective BROWSE: the database records will be displayed in
ascending order of LASTNAME, certain records will be filtered from view, only seven fields will be displayed, the
user will be able to edit any of the fields but SOCSECNUM, the first two fields are in fixed position on the left of
the screen, and appending records is not permitted.

In the previous examples, the optional field list was provided as the parameter to BROWSE, where fields
are restricted to the currently selected database. In many instances, you will want BROWSE to display fields from
related databases, edit fields subject to PICTURE clauses and validation routines, or even compute and display
"virtual" fields--data that is calculated at run time, but not part of any database. For these instances, you will
want to "point" BROWSE to your own "data definition" that specifies a field list in detail. To customize columns
in BROWSE, you will need to include a call to Set_DataDefinition_To, like this:

SET_DataDefinition_TO (@MyColumnDefinitions);

where MyColumnDefinitions is a procedure you write that fills in a predefined DataDefinition record, pointed
to by DataDefinition^ (declared in the TZCOMMON unit). This record has the following fields (types and
default values are indicated in parenthesis) ['' denotes an empty string]:

 TOPAZ Tutorial 45

Column (Byte, n). Set by BROWSE, and refers to the current data column (NOT the character
column). For example, the first data field to be displayed is Column 1, the second Column 2, and so on.
In Edit and EditRecord, Column is the starting column number of the prompt.

Prompt (String[80],''). The column header. BROWSE will default to the field name if this is left empty.
In Edit and EditRecord, Prompt is the string preceeding the GET variable.

Picture (String[80],''). The PICTURE clause for editable fields. Refer to the description of the
PICTURE procedure, on page 386, for a complete discussion on PICTURE formats.

LoRange (String[14],''). The first parameter of the RANGE clause, specifying the lower acceptable
value of a field. Refer to the description of the RANGE procedure, on page 421, for a complete
description of range limits.

HiRange (String[14],''). The second parameter of the RANGE clause, specifying the upper acceptable
value of a field. Refer to the description of the RANGE procedure, on page 421, for a complete
description of range limits.

BlankField (Boolean, False). When True, causes displayed field data to be reset to blanks when a
character is entered in the first column of the field (equivalent to Picture := '@K').

NoEdit (Boolean, False). When True, inhibits the user from editing the contents of the field.

ValidatePtr (Pointer, NIL). Used to point to a user-defined validation procedure that is called
whenever the user edits data in the field. The validation procedure must be declared FAR. Refer to
the description of the Set_Validate-To procedure, on page 611, for an example of a validation
procedure.

AutoHelpPtr (Pointer, NIL). Used to point to a user-defined help procedure that is called whenever
the user enters the field column. The AutoHelp procedure must be declared FAR. Refer to the
description of the Set_AutoHelp-To procedure, on page 479, for an example of an AutoHelp procedure.

FGPrompt (Byte, 0). Foreground Color of prompt in Edit and EditRecord. Not applicable to
BROWSE.

BGPrompt (Byte, 0). Background Color of prompt in Edit and EditRecord. Not applicable to
BROWSE.

DBFAlias (String[10], ''). Any alias of an open database file. An empty string is equivalent to the
currently selected database alias.

FieldName (String[10], ''). The name of the data field belonging to the Alias specified above.

 46 TOPAZ Tutorial

Row (Byte, 0). Row number of start of prompt in Edit and EditRecord. Not applicable to BROWSE.

Required (Boolean, False). When True, requires that data be entered into the field (i.e., blank data is
not permitted).

VirtualField (String[80], ''). Any string, not necessarily a database field, specified by this field will be
displayed by BROWSE. It is important that the length of the string returned be consistent. Not
applicable to Edit or EditRecord.

To see how all this works, let's consider two short examples. In the first example, we have a parent file
(INVOICE.DBF) and a child file (CLIENT.DBF) related to INVOICE via a client code. If we simply BROWSE
the INVOICE database, we will see the client code displayed as a field column. But a client code may not mean
much to the user of the program. Thus, we create a data definition that displays the client's actual name from the
related database instead:

{$F+}
procedure Linkage;
begin
 SelectAlias('client');
 FIND(invoice._CLIENTCODE);
end;

procedure ViewOfInvoices;
begin
 with DataDefinition^ do {a TOPAZ global in unit TzCommon}
 begin
 case Column of

1: FieldName := 'INVOICENO';
2: FieldName := 'INV_DATE';

{ continued on the next page...}

3: begin
DBFAlias := 'client';
FieldName := 'NAME';
Prompt := 'Client';

 end;
4: FieldName := 'AMOUNTDUE';

 end;
 end;
end;

begin {procedure of interest}
 SelectAlias('invoice');
 SET_RELATION_TO(@Linkage); {client is now related to invoices}
 Set_DataDefinition_To(@ViewOfInvoices);
 BROWSE('');
end;

Since you have defined a data definition for BROWSE it is no longer necessary--or desirable--to specify
a field list in the parameter to BROWSE. Also, notice that the ViewOfInvoice procedure sets fields 1,2, and 4 to
fields in the currently selected area (the INVOICE file), but field 3 to the NAME field in the CLIENT file. You
are free to bring as many fields from as many open databases together in the same BROWSE view as you like!

 TOPAZ Tutorial 47

In the second example, we want to take advantage of "virtual" fields. Suppose we again open the
INVOICE file, which for reasons of design, contains price and quantity information, but not the extended cost
= (price * quantity). We would like BROWSE to show both the price and quantity fields, but also display the
product of these two numbers, even though such a figure is not present in any of the files. It's actually quite easy:

procedure ShowCosts;
begin
 with DataDefinition^ do {a TOPAZ global in unit TzCommon}
 begin
 case Column of

1: FieldName := 'INVOICENO';
2: FieldName := 'PRICE';
3: FieldName := 'QUANTITY';
4: VirtualField :=
 SReal(invoice._PRICE * invoice._QUANTITY, 10,2);

 end;
 end;
end;

begin {procedure of interest}
 SelectAlias('invoice');
 Set_DataDefinition_To(@ShowCosts);
 BROWSE('');
end;

The result of this will be a BROWSE window with the real data fields in field columns 1,2, and 3, and
computed cost information in column 4. The idea that this data is "virtual" is not detectable by the user. However,
if the user edits the PRICE or QUANTITY fields, the cost field will quite magically be updated automatically!
Thus, you can program a spread-sheet like application with very little effort using virtual fields.

One of the disadvantages of a typical "browser" is that program control is turned over to the browser,
and you can't regain control until the browsing session is over. In all too many applications this approach is a
weak one, and often unacceptable. The TOPAZ BROWSE, however, is quite different: BROWSE will periodically
return control back to you during the BROWSEing process, if you specify that that is what you want. Here's how:

The TOPAZ call to Set_Browse_Calc_To permits you to define a procedure that is executed whenever
the user changes rows or edits a field. For example, suppose you want to display the highlighted BROWSE record
in detail, nicely formatted, in an area of the screen outside of the BROWSE window. The code to do this might
look like:

{$F+}
procedure ShowDetail;
begin
 At(1,1,'Customer: '+TRIM(customer._FIRSTNAME)+customer._LASTNAME);
 At(1,2,'FedX Number: '+customer._FEDX);
 At(1,3,'FAX Number: '+customer._FAXNUM);
end;

begin {of program or procedure of interest}
 USE('customer', @Customer, SizeOf(customer));
 Set_Browse_Calc_To(@ShowDetail);
 Set_BrowseWindow_To(1,4,80,24,SingleLine,'Customer File');

 48 TOPAZ Tutorial

 BROWSE('');
end;

In this example, we display the Customer database in a BROWSE window. The "calc" procedure,
however, will display certain details of the current record at the top of the screen. Of course, this procedure does
not have to be restricted to database fields being BROWSEd, and in fact can do all kinds of behind-the-scenes
operations.

Another interesting example of "calc" procedures involves handling "hot keys" while in BROWSE. In
the previous example, suppose we want to display details only if the user presses the <+> key. In that case, we
need to take advantage of the TOPAZ WatchKeys variable:

begin {of main program or procedure of interest}
 USE('customer', @Customer, SizeOf(customer));
 Set_Browse_Calc_To(@ShowDetail);
 Set_BrowseWindow_To(1,4,80,24,SingleLine,'Customer File');
 WatchKeys := ['+'];
 BROWSE('');
end;

BROWSE can also be recursive -- you can invoke another BROWSE session during an execution of
BROWSE. The "new" BROWSE session can work on the same or a different database, with its own window,
colors, and "calc" routine. This permits you to work back and forth between two (or more) BROWSE windows,
with data from different databases. The new call to BROWSE must be done in a "calc" routine. The example
code below illustrates calling a second copy of BROWSE: A database called CUSTOMER is BROWSEd such
that when the <Space-Bar> is pressed, a second BROWSE window is opened on a database call INVENTRY.
Exiting this BROWSE returns the program to the first BROWSE window:

{$F+}
procedure BrowseInventory; {the BROWSE "calc" routine}
begin
 if LastKey <> ' ' then Exit; {ignore if not space bar}
 PushBrowse;
 {you can now..}
 Set_BrowseWindow_To (1,1,80,12,SingleLine,'Inventory Data');
 Set_Browse_Calc_To (@YetAnotherCalcRoutine);
 SelectAlias('Inventry');
 BROWSE('');
 PopBrowse;
 SelectAlias('Customer');
end;

begin {main program or precedure of interest}
 SelectAlias('customer');
 Set_BrowseWindow_To (1,13,80,25,SingleLine,'Customer Data');
 Set_Browse_Calc_To (@BrowseInventory);
 WatchKeys := [' '];
 BROWSE('');
 .
 .
end.

 TOPAZ Tutorial 49

Notice the existence of the two procedures PushBrowse and PopBrowse. After a PushBrowse, you can
change any of the BROWSE parameters and call BROWSE. After returning from the nested BROWSE, just call
PopBrowse, and everything related to BROWSE will be restored. You can nest as many levels deep as you want,
or as memory will allow. Each call to BROWSE uses about 1300 bytes from the heap for the nesting.

BROWSE has a number of supporting procedures and functions that you may wish to use to further
enhance how you use BROWSE in your own code. These are listed here, and fully documented in the Technical
Reference section:

function BrowseEdit
function BrowseField
function BrowseRow
procedure Set_Browse_Calc_To
procedure Set_Browse_Color_To
procedure Set_BrowseWindow_To
procedure Set_EditDirection_To
procedure Set_While_To
procedure UpdateBrowseRow
procedure UpdateBrowseScreen
procedure PopBrowse
procedure PushBrowse

Also, don't forget to refer to the Appendix for the global variables and commands pertaining to
BROWSE:

BrowseExitKeys
BrowseFieldSeparator
BrowseVerticalChar
BrowseVerticalColor
ExitBrowse

Another example of using the BROWSE procedure is given in the program called BROWSE.PAS found
in the SAMPLES.ZIP file on the TOPAZ distribution disk(s). By compiling this program to an EXE file, you
will have a handy utility that browses any dBASE database file directly from DOS using the syntax:

C>BROWSE [<filename>] [<commands>]

See the BROWSE.PAS file for additional information.

 50 TOPAZ Tutorial

FULL-SCREEN DATA EDITING

As shown earlier, the procedure SayGet is the central procedure which allows you to edit as many fields
on a screen as you want. The user may jump from field to field and back in the sequence you specify. You may
specify PICTURE clauses which allow individual templates for data entry such as numeric-only data, alpha-only,
uppercase only, and embedded literals such as (999)-999-9999 (permits numbers only, with fixed parentheses
and dashes). Also, RANGE limits data as it is entered subject to upper and lower limits.

Most of the conventional dBASE, WordStar, and Pascal editor keyboard commands are supported such
as <Ctrl-S>, <Ctrl-D>, <Ctrl-X>, <Ctrl-G>, <Ctrl-T>, <Ctrl-C>, <Ctrl-E>, <Ctrl-V>, and also the dBASE keyboard commands
<Ctrl-W>, <Ctrl-Q>, <PgDn> and <Esc> to exit an edit session.

There are several differences and many enhancements to the dBASE standard, some of which are:

Enhanced control of field colors. When dBASE encounters a READ statement, the colors of all the fields
defined in prior SAY and GET statements are determined by the most recent SET COLOR TO statement. Not
so in TOPAZ! TOPAZ allows you to sprinkle SET_COLOR_TO statements in with SayGets with the result that
each input field is in the color specified by the previous SET_COLOR_TO statement. This gives you the freedom
to have fields in different colors, all activated by the same ReadGets.

Enhanced picture format capabilities. Many of the dBASE picture mask characters are available in TOPAZ.
In addition, you can define your own template character, and define the set of permitted data input characters that
template character will then symbolize.

Required fields. In many applications, certain fields must be filled in by the user in order for further processing
to make sense. dBASE does not give you an easy way to force a field to have an entry, but TOPAZ does. By
adding the command REQUIRED after a SayGet statement, some input must occur into that field.

Protection from non-ASCII characters. dBASE allows the user to enter all manner of odd characters in a field.
For instance, if a user accidentally pressed <Ctrl-J>, a byte with the value 0A (hex) would be embedded in an
otherwise printable string. This phantom character will undoubtedly come back to haunt you when reports are
generated or when the data in this field is later referenced. TOPAZ allows the programmer to Set_ASCII_On and
insure that only good, printable characters can be entered into data fields.

Automatic repainting of fields. In dBASE, it is typical to paint fields in reverse video when input is enabled.
The problem is, after the READ statement, your program must go back and somehow repaint these fields to their
normal colors. This takes extra code and extra execution time. TOPAZ, by default, automatically restores fields
to their SAY colors when a ReadGets is terminated. This behaviour can be changed to emulate dBASE by calling
Set_Repaint_OFF.

 TOPAZ Tutorial 51

Context sensitive help. In TOPAZ, you can define an entire help procedure corresponding to each and every
field activated by a ReadGets statement. When the cursor is in a field, and the user presses the "help key" (which
TOPAZ allows you to define), program control is temporarily transferred to your own Pascal procedure. Your
procedure can present a help message, or do more elaborate operations, based on the contents of the field or other
conditions. See the Set_Autohelp_To command.

Data validation on a field-by-field basis. In addition to the ordinary PICTURE and RANGE clauses of a SayGet
statement, TOPAZ lets you create your own custom data validation procedures for any field. Your procedure is
called whenever the user exits the field, and can inspect and even alter the contents of the field. See also
Set_Validate_To.

DesqView/TopView compatibility. If DesqView or TopView is detected then all TOPAZ screen I/O will be
written to the display buffer specified by DesqView or TopView.

Nesting. Since a SayGet can be modified by a validation procedure, it is conceivable that a second copy of
SayGet and ReadGets will be called from within the validation procedure. SayGet/ReadGets support such
nesting up to six levels deep.

The sample program SGDEMO.PAS, found in the SAMPLES.ZIP file on the TOPAZ distribution
disk(s), can be used as a tutorial to better understand the applications of these commands and functions.

Another approach to editing fields of a database is to take advantage of TOPAZ's EditRecord, and EDIT
commands. If you have a database open, EditRecord will cause a window to open in which the user can view and
edit all the fields of the currently positioned record. On an even higher level, the EDIT command permits the user
to both edit records and move through the database, record by record. Both commands have a programming
"hook" that permits you to specify where and how these fields are to be edited.

 52 TOPAZ Tutorial

SCREEN COORDINATES

One of the subtler differences between dBASE and Pascal is the order and value of row and column
parameters when dealing with the cursor location. Pascal programmers are used to the upper left corner of the
screen being referenced by the coordinates 1,1 in column,row order, such as:

GoToXY(8,11); Write('Pascal uses its own coordinate system');

But in dBASE the upper left corner of the screen is referenced by 0,0 in row,column order. In other
words the coordinates are reversed and decreased by 1 compared to Pascal coordinates:

@ 10,7 SAY 'dBASE uses ANSI coordinates'

As you can see, mixing Pascal and dBASE conventions for the cursor location can be a confusing
experience! Since TOPAZ cannot anticipate your preference, TOPAZ allows you to specify either convention.
The commands:

Set_Coordinates_To(Pascal)
Set_Coordinates_To(dBase)

are used to set the order that TOPAZ will interpret coordinate parameters and whether they begin at 1 or 0. In
TOPAZ, Pascal and dBase are pre-defined constants. The default setting is Pascal, and will cause TOPAZ to
treat the first of the coordinate pair as the column value and the second as the row value. You are free to change
the coordinate system at any time, although consistency is strongly recommended.

NOTE: If you choose to use the dBASE coordinate system, only TOPAZ procedures and functions will
be affected by the change. For instance the standard Pascal procedure GotoXY() will never respect parameters
in row,column order.

 TOPAZ Tutorial 53

MEMO FIELDS

The fundamental task of a database application is to store data. Typically, this data consists of records
of names, addresses, dates, numerical data and the like. The dBASE approach of fixed length fields and records
adopted by TOPAZ is a very straight-forward and successful method of handling this task.

Sooner or later, however, your application will call for storing text information of a generally unknown
nature. For example, let's suppose you want to write an application that tracks sales calls. The idea is to store
a prospect's name and phone number in a parent file, and to store one record for each contact made with the
prospect in a related file. The related file should store the result of each sales call. Problem is, think of all the
outcomes of a sales call. The call may result in the prospect's placing an order, raising an objection, or stating
a requirement. Obviously there is no way for the programmer to anticipate the universe of conversations.

What is needed here is the ability for the user to type in free-form text expressing anything at all. The
brute-force solution might be to assign a character field called COMMENT to the file, say 80 characters long,
and append as many records as you need to store this free-form text. This is going to result in lots of records,
which technically should be stored in another related file. Using SayGets to edit these records is really going to
be awkward, since you don't know in advance how many 80 column lines the user will write. A better approach
is to assign a Memo Field to the file. Memo fields are really just "pointers" that refer to the location in a separate
non-DBF file where free-form text is stored. This new file, called a Memo File, is completely maintained by
TOPAZ and is transparent to both the programmer and the user.

Memo files have the same filename as the database file, but have the extension DBT. These files come
into existence whenever you CREATE a database with a Memo field. You can have as many memo fields as you
like (up to 128) in a database record, and they are all stored mixed together in the DBT file. Each memo field in
a record allows the user to create and maintain one memo of almost any length.

For the example discussed above, let the parent and child databases have the following dBASE
structures:

DATABASE: PROSPECT.DBF DATABASE: CALLS.DBF
Name Type Len Name Type Len
---------------------- ----------------------
CODE C 5 CODE C 5
NAME C 24 DATE D 8
PHONE C 20 NOTES M 10
---------------------- ----------------------

Notice the CALLS database has a field called NOTES, which is of type "M" for memo. The field length
is fixed at 10 bytes, which is the size of the internal pointer stored in dBASE format.

 54 TOPAZ Tutorial

Your program calls the USE procedure to open both files, and then calls SET_RELATION_TO to
establish the one-to-many link between the parent PROSPECT and the child CALLS.

Suppose the user has just finished making a sales call to a prospect, and wants to append a new record
to the CALLS database. You can fill in the DATE field automatically with SystemDate, and the CODE field is
a key that is determined by the position in the parent file. All you need to do is to edit the memo:

Calls._DATE := SystemDate;
Calls._CODE := Prospect._CODE;
EditMemo(Calls._NOTES,'');

When you call EditMemo on a memo field, TOPAZ opens an editing window and invokes the TOPAZ
text editor. The user can now type in any free-form text in this scrolling and panning window, using the
WordStar/Borland keystroke conventions.

The memo editor defaults to a full screen, with Borland's SideKick color scheme, and includes a status
line. Unlike dBASE, you have a wide range of control over the look and feel of the memo editing process. You
can specify the size and location of the memo window, the editing colors, and even re-map the command keys.
By using the second parameter of EditMemo, and the two routines SET_MemoWindow_TO and
SET_Memo_Color_TO, you can quickly customize the look and feel of the memo editor to fit the needs of your
applications.

 An example is:

Set_MemoWindow_To(5,5,75,20,DoubleLine,'Notes');
Calls._DATE := SystemDate;
Calls._CODE := Prospect._CODE;
EditMemo(Calls._NOTES,'NOSTATUS NORESIZE');

For a complete list of clauses that can be passed to EditMemo, and for details on the operation of the
editor, refer to the section "Text Editor and Editing Commands" on page 0, or see the EditMemo procedure on
page 0.

When the user has finished editing a memo, and control returns from EditMemo, you can add the record
by calling APPEND. If the user were editing an existing memo, you would REPLACE the record. Storage of
the new or modified text is handled by TOPAZ without any further effort on your part.

As another example, suppose the memo field were just one of a number of fields being edited with a
ReadGets. Like this:

SayGet(10,10,' Widgets Ordered: ', _NUMBER, _I, 4, 0);
SayGet(10,11,' Shipping Code: ', _SHIP, _C, 3, 0);
SayGet(10,12,'Special Instructions: ', _NOTES, _M, 0, 0);
ReadGets;

 TOPAZ Tutorial 55

In this case, ReadGets will take care of the call to EditMemo for you. ReadGets will display the word
"memo" on the screen at the GET location for "empty" memos, and "MEMO" for memos that have text data. Just
as in dBASE, when the cursor is on the memo field of the display, the user can press <Ctrl-Home> to enter the
memo editor and <Ctrl-End> to finish.

A SayGet statement for a memo field accepts a PICTURE that is identical in function to the clauses
passed to EditMemo. Thus,

SayGet(10,12,'Special Instructions: ', _NOTES, _M, 0, 0);
PICTURE('NOSTATUS NORESIZE');
ReadGets;

has exactly the same effect as

EditMemo(Calls._NOTES,'NOSTATUS NORESIZE');

There are three more ways to edit memos. These are embedded in EditRecord, EDIT, and BROWSE.
In each instance, memo fields are shown as "memo" or "MEMO", and can be edited by pressing <Ctrl-Home> when
the cursor is on the memo field.

In certain applications, you may wish to merely display the contents of a memo on the screen. For
example, a portion of the screen can be dedicated to the display of the memo as each record is shown. Calls to
DisplayMemo will fill this need. DisplayMemo works with its own window area (but defaults to the EditMemo
window), and will word wrap the memo to fit the dimension of that window. If SET_PRINT_ON or
SET_ALTERNATE_ON are in effect, memos can be redirected to combinations of the screen, printer, or text file.
In addition, the report generator (REPGEN) and the ReportForm procedure permit you to list memos as part of
reports.

If you are familiar with dBASE III, you are probably aware of the fact that your program cannot access
or modify the contents of memos. In TOPAZ, your code is provided with handy methods of determining what is
in a memo, searching through memos, modifying the contents of memos, and even filtering and indexing records
based on phrases in memos! Let's look at some examples:

First, suppose we need to read a memo, uppercase all the characters, and print the result. TOPAZ gives
you access to any memo via a "device driver" that mimics how you would normally generate I/O to a text file. The
procedure AssignMemo is called to reserve a Pascal text file variable to a memo field. From then on, you can
read each string in the memo as though it were just a string in an ordinary text file, like this:

var m : text;
line : string;

.

.
AssignMemo(m, calls._NOTES);
Reset(m);
while not eof(m) do
 begin
 ReadLn(m, line);

 56 TOPAZ Tutorial

 Writeln(lst, line);
 end;
Close(m);

 TOPAZ Tutorial 57

As in the previous examples, _NOTES is a memo field in the CALLS.DBF file. Note that you call
Reset, Append, or Rewrite in exactly the same way as with real text files: Reset to read a memo, Rewrite to create
or overwrite a memo, and System.Append to add text to a memo. Also, note that you can use the Pascal "eof"
function to read to the end of the memo, just as if the memo were a tiny file of its own. It is important to note that
AssignMemo doesn't really open any file (after all, the memo file is already open). We are just using the Assign,
Reset, Rewrite..Close syntax to accomplish accessing memo data in way that is familiar, comfortable, and easy
to work with. So don't be confused into thinking that accessing memo data this way is slow, or that there will be
lots of disk I/O going on.

As another example, suppose you want to set a filter on the CALLS database so that only records with
memos containing the words "HOT PROSPECT" are visible. This is done with SET_FILTER_TO and the memo
device driver:

{$F+}
function HotProspects : Boolean;
var m : text;

line : string;
begin
 HotProspects := False;
 if calls._NOTES = 0 then Exit;
 AssignMemo(m, calls._NOTES);
 Reset(m);
 repeat
 ReadLn(m,line)
 until (pos('HOT PROSPECT', UPPER(line)) > 0) or eof(m);
 HotProspects := not eof(m);
 Close(m);
end;
.
.
SET_FILTER_TO(@HotProspects);
GoTop;
BROWSE('');

Notice in this example that if CALLS._NOTES is zero, we filter out the record. The reason is that
whenever a memo field is zero, no memo exists for that record.

In a final example of the memo device driver, suppose you want to search a database for records with
memos that contain a given string. The following procedure will produce this result:

 58 TOPAZ Tutorial

procedure SearchNotes(s:string);
var m : text;
 line : string;
begin
 GoTop;
 while not deof do
 begin
 if calls._NOTES > 0 then

 begin
 AssignMemo(m,calls._NOTES);
 reset(m);
 while not eof(m) do
 begin

ReadLn(m,line);
if pos(s,line)>0 then exit;

 end;
 close(m);
 end;
SKIP(1);

 end;
end;

This example assumes of course that the database "CALLS" is open and currently selected, and it has
a memo field called NOTES. Also, the routine always starts at the top of the file (GoTop), and leaves with the
file positioned at the first occurrence of a find, or at EOF if there were no memos found that match the search
string. And as you can see, the search is case sensitive. Obviously you can modify and generalize this example
to search memos in any other way you prefer.

Instances of memo editing come up where the user would like to paste data from a database field or
elsewhere into the text of the memo. To do this you need: a way to specify a "hot key", transfer of control to your
routine when this key is pressed during a memo editing session, and a way to inject a string into the memo at the
current cursor location. TOPAZ gives this flexibility with its Set_EditFKey and PasteString procedures. The
following simple example illustrates the method:

{$F+}
procedure InjectSystemDate;
begin
 PasteString(FullDate(SystemDate));
end;
.
.
Set_EditFKey(F1, @InjectSystemDate);
EditMemo(calls._NOTES,'');

Here, the routine InjectSystemDate is "assigned" to the <F1> key. When the user presses <F1> during
editing the memo, the formatted current date is immediately placed in the memo at the current cursor location.
Obviously the routine to select text data to paste can be much more complex. In the following example, a PickList
of field values from the currently selected database is used to let the user choose data to paste:

{$F+}
FUNCTION ShowField(VAR i:integer):String;
begin
 ShowField := SField(i);

 TOPAZ Tutorial 59

end;

PROCEDURE HandleHotKey;
VAR i:integer;
begin
 i := PickList(@ShowField, 1, FieldCount,1);
 if i > 0 then PasteString(Sfield(i));
end;
.
.
Set_EditFkey(F1,@HandleHotKey);
EditMemo(calls._NOTES,'');

We now come to a word of caution regarding memo files. They get big fast! The reason for this stems
from how dBASE implemented the standard memo file. Text is stored in blocks of 512 bytes. This means that
the memo "Hello World" requires 512 bytes of storage. An empty memo, however, requires no storage (other
than the 10 bytes in the DBF file). Whenever a memo is edited, the old text blocks are "detached" from the
database record, and the new text blocks are added to the file. Unfortunately, the old discarded text still
contributes to the memo file size, and is not reused. Editing "Hello World" to "Goodbye cruel world" expands
the size of the memo file by 512 bytes. Whereas other dBASE dialects do not give the programmer a way to
control this mushrooming situation, TOPAZ does provide programmable "garbage collection". TOPAZ keeps
track of the blocks of old text, enabling the function ActiveMemos to return the percentage of the memo file that
contains good memos. When your program determines that ActiveMemos is low (and that's a judgement you
make), you can call the PackMemoFile procedure to condense the file to its smallest size. For example, when
your program starts (or perhaps when it ends), you could do the following:

If ActiveMemos < 0.5 then PackMemoFile; {less than 50% of the file contains
active memo blocks}

This will pack the memo file associated with the currently selected database. Of course whenever you
PACK a database (removing records marked for deletion), the memo file is automatically packed.

 60 TOPAZ Tutorial

TEXT EDITOR AND EDITOR COMMANDS
The TOPAZ editor that is used to edit memos is also available to edit any text file. The most

straightforward application of the editor is a call to EditText. The example below demonstrates how TOPAZ can
be used to make a stand-alone editor, which might be called "TED" for TOPAZ EDitor.

program ted;
uses edit;
begin
 EditText(paramstr(1));
end.

Here, the editor looks for a file specified on the command line. If none is specified, a "NONAME"
document is edited. Passing a filename with a "wildcard" to EditText will cause the editor to present a pick list
of appropriate file names to choose from. Some examples are:

C> TED
C> TED invoices.pas
C> TED *.txt

TED is a full-screen editor, since that is EditText's default size. In addition, you will note a status line
appearing at the top of the screen that displays the line and column number of the cursor, whether you are in
Insert or Overwrite mode, whether word wrap is ON or OFF, whether you are in Text editing or Re-sizing mode,
and the name of the file being edited. Furthermore, TED's color scheme (the default colors of EditText) are those
of Borland's Turbo Pascal editor. The default colors of EditMemo are those of Borland's SideKick.

You will immediately notice that the editor follows the classic set of WordStar/Borland command keys.
These are:

Basic Commands:

Cursor left <Ctrl-S> or <LeftArrow>

Cursor right <Ctrl-D> or <RightArrow>

Word left <Ctrl-A> or <Ctrl-LeftArrow>

Word Right <Ctrl-F> or <Ctrl-RightArrow>

Line up <Ctrl-E> or <UpArrow>

Line down <Ctrl-X> or <DownArrow>

 TOPAZ Tutorial 61

Basic Commands (continued...):

Page Up <Ctrl-R> or <PgUp>

Page down <Ctrl-C> or <PgDn>

Top of file <Ctrl-QR> or <Ctrl-PgUp>

Bottom of file <Ctrl-QC> or <Ctrl-PgDn>

Go to Line Number <Ctrl-ON>

Beginning of line <Home>

End of line <End>

Delete char <Ctrl-G> or

Delete word <Ctrl-T>

Delete line <Ctrl-Y>

Insert/Overwrite (Toggle) <Ctrl-V> or <Ins>

New line <Ctrl-M> or <Enter>

Insert line <Ctrl-N>

Don't interpret next key <Ctrl-P>

Block Commands:

Mark start of block <Ctrl-KB> or <F7>

Mark end of block <Ctrl-KK> or <F8>

Delete block <Ctrl-KY>

Read block <Ctrl-KR>

Write block <Ctrl-KW>

Move block <Ctrl-KV>

Copy block <Ctrl-KC>

Erase block definition <Ctrl-KH>

Print block <Ctrl-KP>

Go to start of block <Ctrl-QB>

Go to end of block <Ctrl-QK>

Search and Replace Commands:

Search <Ctrl-QF> or <F9>

Resume search <Ctrl-L>

Search and Replace <Ctrl-QA> or <Shift-F9>

Go to Line Number <Ctrl-ON>

 62 TOPAZ Tutorial

Save and Load Commands:

Save and Continue <Ctrl-KS> or <F2>

Save and Exit <Ctrl-KD>, <Ctrl-End>, or <Alt-X>

Abandon Changes and Exit <Ctrl-KQ> or <Esc>

Load New File <F3>

Word Wrap Commands:

Toggle Word Wrap on or off <Ctrl-OW>

Set the Word Wrap width <Ctrl-OR>

Reformat a paragraph <Ctrl-B>

Function Keys:

Help <F1>

Save and resume <F2>

Load <F3>

Print <F6>

Mark start of Block <F7>

Mark end of Block <F8>

Search <F9>

Select Editor Help file <Shift-F1>

Select Directory <Shift-F2>

Select Default Extension <Shift-F3>

Set Print Parameters <Shift-F6>

Search and Replace <Shift-F9>

Delete Text (ZAP) <Shift-F10>

Block Commands. Blocks of text may be written to disk, deleted, copied or moved to another place in the file,
or printed. The beginning of the block is marked by positioning to the first character in the block and pressing
<Ctrl-KB> or <F7>. The end of the block is marked by positioning to the last character in the block and pressing
<Ctrl-KK> or <F8>. Once a block is defined, it will be presented in special block colors. Once a block has been
defined, you can move back to the beginning of a block or end of the block quickly with <Ctrl-QB> and <Ctrl-QK>.
To remove the block markers, you can press <F7>-<F8> or <Ctrl-KB><Ctrl-KK> or <Ctrl-KH>.

 TOPAZ Tutorial 63

Search Commands. <Ctrl-QF> prompts you for a string to find. Once you have entered the search string, the
following options may be entered:

 G - Search from the top of the file to the end, regardless of the current cursor position (Global
search)

 U - ignore case
 W - search for whole words only
 B - search backwards
 C - count replacements
 N - no confirmation
[n] - repeat n times

<Esc> cancels a search. <Ctrl-L> resumes a search. <Ctrl-QA> does a search and replace.

Help. The <F1> key provides help, using the default help file EDITOR.HLP. This file is an ASCII text file and
may be customized as desired. Lines in EDITOR.HLP with an asterisk in column 1 designates this line as a
choice in the main menu of the help system. Leave help with <Esc>. Use <Shift-F1> to select a different editor help
file. The file name can be fully qualified.

Print Document. <F6> causes all text in the editor to be printed. Margins, form length, and lines per page may
be preset using the <Shift-F6> function. To print text blocks use the <Ctrl-KP> function.

Move and Resize Window. Turning Scroll Lock on (by pressing the <Scroll-Lock> key) causes the editor to enter
a move-and-resize mode. In this mode, you can use the cursor keys to move the edit window anywhere on the
screen. Pressing the <Right-Shift> key at the same time as a cursor key will cause the edit window to grow.
Conversely, pressing the <Left-Shift> key at the same time as a cursor key will cause the edit window to shrink.
Turning Scroll Lock off or pressing <Esc> will cause the editor to return to editing text. Successive calls to
EditText (or EditMemo) will continue to use the new window coordinates (unless the programmer resets the
window size with the SET_EditorWindow_TO command), but the window configuration isn't saved when the
program terminates.

The behavior of the editor can be modified by adding any of the following clauses to the filename passed
to EditText (or EditMemo):

 64 TOPAZ Tutorial

Editor Clauses

FULLSCREEN Causes the current editor window setting to be reset to the maximum window size possible,
with no frame.

NOBACKUP Normally the editor renames the original file being edited with a BAK extension. This
clause inhibits this feature. (EditText only, not available in EditMemo)

AUTOSAVE Automatically saves the file to disk after five hundred (500) key strokes.

NOEDIT Permits viewing of the file or memo, and inhibits the user from making any changes to the
file.

NOSTATUS Inhibits display of status information on the top row.

NORESIZE Inhibits the user from moving or re-sizing (growing or shrinking) the editing window.

NORESTORE Normally the editor saves the underlying screen and restores it after the edit session is
complete. This clause inhibits this feature.

NOCREATE Inhibits the user from saving the file with a new file name (EditText only).

RULER Causes a "ruler" to be displayed on the bottom row of the editor window

WRAP Turns word wrapping on. The word wrap length is the width of the editing window.

PLAIN Equivalent to NOEDIT NOCREATE. To prevent the user from resizing the editing window,
you should use the NORESIZE clause.

SHOW Displays as much of the text file or memo in the current window as is possible and returns
control to the calling program.

 TOPAZ Tutorial 65

Keyboard Remapping

KeyMap is a two dimensional array [^A..#27, #0..#27] where the first dimension stands for ^A to ^Z plus Esc.
If the second dimension contains a #0, then pressing the bare control-key (^A-^Z) calls the assigned function.
If there is a character in the range of ^A..^[in the second dimension you must press two keys to call a function.

Examples:

^L to delete a line : KeyMap[^L, 0] := _deleteline;
^LA or ^L^A " : KeyMap[^L,^A] := _deleteline;

<Esc> should exit : KeyMap[#27,0] := _escape;
To disable <Esc> : KeyMap[#27,0] := _nofunc;

The function key assignments are kept in a separate array FKeyMap[128..370]. The method of
handling the extended keycodes is the same as in WatchKeys, this means the index of the key is computed from
the Extended Key Code plus 128 (see page 424 in the Turbo Pascal 5.5 Reference Guide, page 352 in the Turbo
Pascal 6.0 Programmers Guide).

Examples:
 +)))))))))))))0))))))))))0)))))))))))))))))))))))))))))),
 * ExtendedCode* plus 128 * Array element Function *
?44444N444L444444444P4444444444P444444444444444444444444444444I
* Alt-Y * 21 * 149 * FKeyMap[149] := _anyfunction*
* Ctrl-End* 117 * 245 * FKeyMap[245] := _anyfunction*

 .)))))))))2)))))))))2))))))))))2))))))))))))))))))))))))))))))-

Here is how to re-map the keyboard with the default settings:

procedure ResetDefaultEditorKeys;
begin
 { First clear any existing assignments: }
 FillChar(KeyMap, SizeOf(KeyMap), _nofunc);
 FillChar(FKeyMap, SizeOf(FKeyMap), _nofunc);

 { Now assign values to the control keys.
 Note that the same function may be assigned to multiple keys }
 Keymap[^A, #0] := _prevword; {^A}
 KeyMap[^B, #0] := _reformat; {^B}
 Keymap[^C, #0] := _pgdown; {^C}
 Keymap[^D, #0] := _curright; {^D}
 Keymap[^E, #0] := _curup; {^E}
 Keymap[^F, #0] := _nextword; {^F}
 Keymap[^G, #0] := _del; {^G}
 Keymap[^H, #0] := _backsp; {^H}
 Keymap[^I, #0] := _tab; {^I}
 Keymap[^K, ^B] := _blockbeg; {^KB or ^K^B}
 Keymap[^K, ^C] := _copyblock; {^KC or ^K^C}
 Keymap[^K, ^D] := _exitsave; {^KD or ^K^D}
 Keymap[^K, ^H] := _blockoff; {^KH or ^K^H}
 Keymap[^K, ^K] := _blockend; {^KK or ^K^K}
 Keymap[^K, ^P] := _printblock; {^KP or ^K^P}
 Keymap[^K, ^Q] := _quitnosave; {^KQ or ^K^Q}

 66 TOPAZ Tutorial

 Keymap[^K, ^R] := _readblock; {^KR or ^K^R}
 Keymap[^K, ^S] := _quicksave; {^KS or ^K^S}
 Keymap[^K, ^V] := _moveblock; {^KV or ^K^V}
 Keymap[^K, ^W] := _writeblock; {^KW or ^K^W}
 Keymap[^K, ^X] := _exitsave; {^KX or ^K^X}
 Keymap[^K, ^Y] := _delblock; {^KY or ^K^Y}
 Keymap[^L, #0] := _searchcont; {^L}
 Keymap[^M, #0] := _enter; {^M}
 Keymap[^N, #0] := _insline; {^N}
 KeyMap[^O, ^N] := _GotoLn; {^ON or ^O^N}
 KeyMap[^O, ^R] := _setWidth; {^OR or ^O^R}
 KeyMap[^O, ^W] := _toggleWrap; {^OW or ^O^W}
 Keymap[^P, #0] := _ctrchars; {^P}
 Keymap[^Q, ^A] := _replace; {^QA or ^Q^A}
 Keymap[^Q, ^B] := _findblockb; {^QB or ^Q^B}
 Keymap[^Q, ^C] := _endfile; {^QC or ^Q^C}
 Keymap[^Q, ^F] := _search; {^QF or ^Q^F}
 Keymap[^Q, ^K] := _findblocke; {^QK or ^Q^K}
 Keymap[^Q, ^R] := _beginfile; {^QR or ^Q^R}
 Keymap[^R, #0] := _pgup; {^R}
 Keymap[^S, #0] := _curleft; {^S}
 Keymap[^T, #0] := _delword; {^T}
 Keymap[^V, #0] := _ins; {^V}
 KeyMap[^W, #0] := _exitsave; {^W}
 Keymap[^X, #0] := _curdown; {^X}
 Keymap[^Y, #0] := _delline; {^Y}
 Keymap[^[, #0] := _escape; {^[}

{ now assign values to the function keys (see page 424 of Turbo Pascal 5.5 Reference
Guide, or page 352 of the Turbo 6.0 Programmers Guide) add 128 to the values of the
"Extended Key Codes" and use the result as the index into the FKeyMap :
array[128..370] }

 FKeyMAP[143] := _backtab; {Shift-Tab}
 FKeyMAP[144] := _quitnosave; {Alt-Q}
 FKeyMAP[163] := _help; {Alt-H}
 FKeyMAP[173] := _exitsave; {Alt-X}

 FKeyMAP[187] := _help; {F1}
 FKeyMAP[188] := _quicksave; {F2}
 FKeyMAP[189] := _loadfile; {F3}
 FKeyMAP[192] := _print; {F6}
 FKeyMAP[193] := _blockbeg; {F7}
 FKeyMAP[194] := _blockend; {F8}
 FKeyMAP[195] := _search; {F9}

 FKeyMAP[199] := _home; {Home}
 FKeyMAP[200] := _curup; {CursorUp}
 FKeyMAP[201] := _pgup; {PgUp}
 FKeyMAP[203] := _curleft; {CursorLeft}
 FKeyMAP[205] := _curright; {CursorRight}
 FKeyMAP[207] := _end; {End}
 FKeyMAP[208] := _curdown; {CursorDown}
 FKeyMAP[210] := _ins; {Insert}
 FKeyMAP[211] := _del; {Del}
 FKeyMAP[209] := _pgdown; {PgDn}

 FKeyMAP[212] := _sethelp; {Shift-F1}
 FKeyMAP[213] := _setdir; {Shift-F2}
 FKeyMAP[214] := _setext; {Shift-F3}
 FKeyMAP[217] := _setprint; {Shift-F6}

 TOPAZ Tutorial 67

 FKeyMAP[219] := _blockoff; {Shift-F8}
 FKeyMAP[220] := _replace; {Shift-F9}
 FKeyMAP[221] := _zap; {Shift-F10}

 FKeyMAP[222] := _nofunc; {Ctrl-F1}
 FKeyMAP[231] := _nofunc; {Ctrl-F10}

 FKeyMAP[232] := _nofunc; {Alt-F1}
 FKeyMAP[241] := _nofunc; {Alt-F10}

 FKeyMAP[243] := _prevword; {Ctrl-LeftArrow}
 FKeyMAP[244] := _nextword; {Ctrl-RightArrow}
 FKeyMAP[245] := _quickexit; {Ctrl-End}
 FKeyMAP[246] := _endfile; {Ctrl-PgDn}
 FKeyMAP[260] := _beginfile; {Ctrl-PgUp}

 FKeyMAP[261] := _nofunc; {F11}
 FKeyMAP[262] := _nofunc; {F12}

end;

An alternate method of attaching your custom routines to keys is available. By assigning a key to
_UserDefined your procedure will be called if you have first given the editor a pointer to that procedure.

Your procedure must have the following format:

{$F+}
procedure MyCustomEditProc(VAR KeyValue:Integer);
begin
 case KeyValue of
 196 : { F10 }
 begin
 { call or execute your custom routine }
 end;
 end;
end;

{ and would be utilized something like this: }

procedure CallEditor;
begin
 { tell the editor to call your routine when F10 is pressed }
 Edit.FKeyMAP[196] := _UserDefined; {F10}

 { tell the editor what routine to call when the user defined key(s)
 are pressed }
 Edit.UserFunction := @MyCustomEditProc;

 { invoke the editor }
 Edit.EditText('');
end;

 68 TOPAZ Tutorial

DATE MATH

Dates in TOPAZ are typed as String[10], and the default format is "mm/dd/yy" or "mm/dd/yyyy". There
are a number of procedures and functions in the TIMEDATE unit that allow you to handle dates and do date
mathematics, in any of seven international formats. For the discussion that follows, we assume that we want to
represent date in American format (month/day/year).

When a date is a data entry field in a SayGet statement, specify the type as _D (underbar D). SayGet
will automatically format the input to "mm/dd/yy" or "mm/dd/yyyy" depending on whether CENTURY is set ON
or OFF. No PICTURE clause is required. Impossible dates that are typed into date fields are rejected, and when
SCOREBOARD is set ON, a message on the scoreboard line appears explaining the problem. Using the RANGE
statement allows you to specify a valid range of dates.

Date math functions, available in the TIMEDATE unit are:

 # SystemDate returns the DOS date. For example,

At(1,1,'Date: '+SystemDate);

The format of SystemDate is 'mm/dd/yy' if CENTURY is OFF (the default) or 'mm/dd/yyyy'
if CENTURY is ON.

 # DAY(DateVar) returns the day of the month as a byte (from 1 to 31).

 # MONTH(DateVar) returns the month of the year as a byte (from 1 to 12).

 # YEAR(DateVar) returns the year in numeric value of type Word. If the length of DateVar is
8, then Year will be in 2 digit format (1-99). If the length of DateVar is 10, the Year will be
in 4 digit format (1-9999). Otherwise, 0 will be returned.

 # CDOW(DateVar) returns the day of the week in 9-character padded string format (from
"Monday " to "Sunday ").

 # CMONTH(DateVar) returns the month of the year in 9-character padded string format, (from
"January " to "December ").

 # CYEAR(DateVar) returns the year as a string in either 2 or 4 character format.

 # DOW(DateVar) returns the day of the week in byte format (from 1 = Sunday to 7 = Saturday).

 TOPAZ Tutorial 69

 # DatePlus(DateVar, n) returns a date string resulting from adding n days to DateVar. If n is
negative, the function returns the date resulting from subtracting n days from DateVar.

 # DateDiff(Date1, Date2) returns the number of days from Date2 to Date1 as a LongInt. Think
of DateDiff as Date1 minus Date2, so that DateDiff returns a positive number if Date1 is later
than Date2.

 # DateFrom(Year, Month, Day) returns a string date from numerical values of day, month, and
year.

TOPAZ allows you to work with nine different date formats: American, ANSI, British, Italian, French,
German, Spanish, French Canadian, and Russian. These formats are defined as follows:

American: mm/dd/yy or mm/dd/yyyy
ANSI: yy.mm.dd or yyyy.mm.dd
British: dd/mm/yy or dd/mm/yyyy
Italian: dd-mm-yy or dd-mm-yyyy
French: dd.mm.yy or dd.mm.yyyy
German: dd.mm.yy or dd.mm.yyyy
Spanish: dd.mm.yy or dd.mm.yyyy
FrenchCanadian: dd.mm.yy or dd.mm.yyyy
Russian: dd.mm.yy or dd.mm.yyyy

The procedure SET_DATE(DateFormat) is used to establish the format for representing, computing,
and displaying dates. The parameter DateFormat is a byte that ranges from 0..8, or you can use the pre-defined
constants American..Russian. An example of code to display the system date in German is:

SET_DATE(German);
WriteLn(SystemDate);

SET_DATE not only applies to date routines, but also to the data entry format during SayGet sessions.
As an example, consider the following code:

SET_DATE(Italian);
Date := '';
SayGet(10,10,'Enter date: ',Date,_D,8,0);
ReadGets;

The first line instructs TOPAZ that all dates will be handled in Italian format until a new SET_DATE
command is issued. The SayGet/ReadGets code will place the following prompt on the terminal:

Enter date: - -

and will only allow valid Italian dates to be entered. Note that the date is automatically correctly formatted.

The string functions CDOW and CMONTH will return day and month names in the language specified
by Set_Date. Thus, the code

 70 TOPAZ Tutorial

SET_DATE(Spanish);
WriteLn(CDOW(SystemDate),', ',
CMONTH(SystemDate),' ',
DAY(SystemDate));

will display "Lunes, Febrero 19" (assuming the system date is 19.02.88).

Full documentation for the use of date math functions can be found in the Technical Reference section.
In addition, examples of date math usage are given in the time/date demo program TD-DEMO.PAS found in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s).

 TOPAZ Tutorial 71

TIME MATH

Apart from the TIME() function, dBASE does not provide any other useful time handling routines.
TOPAZ does. You will find the time routines provided in TOPAZ's TIMEDATE unit to be extremely useful in
scheduling, payroll, accounting, real-time monitoring and control applications.

Time variables are of type TimeType = String[8] and are expressed in zero-padded 24-hour format:
"hh:mm:ss". When a time is a data entry field in a SayGet statement, specify the type as _T (underbar T). SayGet
will automatically format the output to 'hh:mm:ss'. No PICTURE clause is required. Blanks in the time variable
are replaced with zeros, and impossible times are screened (although hours can range from 00 to 99). When
SCOREBOARD is set ON, a message on the scoreboard line appears explaining the problem. Using the RANGE
statement allows you to specify a valid range of times.

In TOPAZ it is possible to convert from TimeType to fractional hours, minutes, and seconds, add times,
and find time differences. To assist in clear notation, the TIMEDATE unit defines the type TimeUnits as:

type TimeUnits = (Hours, Minutes, Seconds, Ticks);

The identifier "Ticks" is the system's clock smallest unit of time measurement, there are 18.2065 ticks
per second.

Time math functions, with simple examples are:

 # SystemTime returns the DOS time of day. Example:

At(1,1,'Program execution started at '+SystemTime);

The following is one line of code you can use to display the time while waiting for a certain time to
begin a process:

repeat Write(SystemTime,^M) until SystemTime >= '14:30:00';

 72 TOPAZ Tutorial

 # InHours(TimeVar) returns the time in hours as a real. Example:

SwingShift := InHours('08:35:30');

would set the real variable SwingShift to 8.5917 (hours).

 # InMinutes(TimeVar) returns the time in minutes as a value of type Real.

 # InSeconds(TimeVar) returns the time in seconds as value of type Real.

 # InTicks(TimeVar) returns the time in Ticks as a real.

 # Time(NumericTime, Units) returns the time as a string[8] given a certain number of hours, minutes,
seconds or ticks (as real) and units (as TimeUnits). Example:

x := 12.347;
StringTime := Time(x, hours);

Here, the variable StringTime will be set to "12:20:49".

 # TimeDiff(Time2, Time1) returns the amount of time between the two TimeType string vars Time2 and
Time1:

TimeOnTheJob := TimeDiff('17:10:20', '08:31:55');

gives the result for TimeOnTheJob as '08:38:25' (8 hours, 38 minutes, 25 seconds)

 # TimePlus(CurrentTime, AdditionalTime) returns the new time resulting from adding AdditionalTime
to CurrentTime. Example:

At(1,1,'In 8 hours, 43 minutes the time will be '
+TimePlus (SystemTime,'08:43:00'));

 # AM_PM(TimeVar) returns the time expressed in am/pm format.

These routines maintain a global error variable called TimeError with values from 0 (successful
operation) to 239-242 (error occurred). Refer to the section entitled "Error Handling." In addition, uses of these
routines are illustrated in the demo program TD-DEMO.PAS found in the SAMPLES.ZIP file on the TOPAZ
distribution disk(s).

 TOPAZ Tutorial 73

CLOCKS AND CALENDARS

The previous section showed how TOPAZ lets you work with dates and times, and perform a wide
variety of mathematical functions on date and time variables.

One of the nice touches you might want to give your programs is displaying the time of day in a corner
of the screen. Something like

AT(1, 1, SystemTime);

would do the trick, but you would have to periodically refresh the display since the time shown would very
quickly become stale. Since the real work of your application is probably managing menus, maintaining database
files, and printing reports, updating the time could prove to be a big nuisance and most likely not worth the
programming effort.

Fortunately, TOPAZ's CLOCK unit comes with an interrupt-driven routine to automatically refresh time
displays. Once your program requests the time to be displayed, TOPAZ will continue to update the display with
no further work on your part. What's more, you can "attach" several clocks and timers with various formats
anywhere on the screen and have them all running at once!

There are eight clocks and elapsed-time timers available in TOPAZ. By default, only Clock 1 is enabled
with the default format of military style time. The simplest code you can write to incorporate a clock in your
application is therefore this little line of code:

Set_Clocks_On;

This will cause clock 1 to appear in the upper right corner of the screen in reverse video. The clock will
be automatically refreshed until either your application exits to DOS, you disable the clock, or you call
Set_Clocks_Off.

You can control the position, color, and format of the clock display with the routines Set_Clock_To,
Set_Clock_Color_To, and Set_Clock_Format_To. For example, suppose we want the clock to appear at the
lower left of the display, blue on cyan, showing hours and minutes in AM/PM format. The code to do this would
be:

Set_Clock_To(1,25);
Set_Clock_Color_To(Blue, Cyan);
Set_Clock_Format_To('HH:MM AMPM');

Next, suppose you also want to show the time elapsed since the program was invoked. TOPAZ
considers a timer to be just another clock, but set to 00:00:00 when it is formatted. So, we would need to select
another clock for our timer, say clock 2, specify the position of the clock, and indicate we want an elapsed-time
timer. Like this:

 74 TOPAZ Tutorial

SelectClock(2);
Set_Clock_To(70,25);
Set_Clock_Format_To('MM:SS ELAPSED TIME');

Another feature programmers are tempted to put into their applications is a calendar, either for display
purposes, or for selecting a date. Again, this is a feature perceived by the end-user as a convenience, but
normally requires a disproportionate amount of effort on the part of the programmer. Knowing this, TOPAZ has
several built-in calendar routines.

The simplest one is just

DisplayCalendar(SystemDate);

If you write this little one-line program, and run it, you will see the following pop-up on your screen
(assuming the system date is 03/11/90):

+)))))))))))))))))))))))))))))),
* Sunday March 11, 1990 *
* S M T W T F S *
* 1 2 3 *
* 4 5 6 7 8 9 10 *
* 11 12 13 14 15 16 17 *
* 18 19 20 21 22 23 24 *
* 25 26 27 28 29 30 31 *
* *
* Day of Year : 70 *
.))))))))))))))))))))))))))))))-

The date specified will be shown at the top of the calendar, the calendar for the relevant month will be
displayed, and the day of the year is shown at the bottom. The day names 'S M T ...' and the specified date will
be in reverse video.

By default, the calendar is displayed at the upper right of the screen, with a single-line box, and
monochrome colors. You can customize your calendar by calling the Set_Calendar_To routine:

Set_Calendar_To(30, 8, Blue, Cyan, DoubleLine, '');

In the above example, the upper left corner of the calendar is positioned to column 30, row 8, the day
names and date specified will be blue on cyan, and the calendar will be bordered by a double line box, with no
heading. Of course you can add a shadow, or make your calendar "explode" onto the screen by adding the
predefined constants Shadow and Explode to the line style parameter.

Even more useful is the ability for the user to "scroll" through this calendar to specify a date. The
syntax:

Date := SelectDate(SystemDate);

 TOPAZ Tutorial 75

for example, will cause a calendar to appear, as with DisplayCalendar, but now the highlighted date is dynamic.
By using the cursor keys, the user can navigate through each date in the calendar. By pressing the <Enter> key,
the user can select a date, which is returned by the SelectDate function (for a complete list of key functions refer
to the SelectDate procedure on page 468). By adding clauses to the specified date parameter, you can restrict
the dates being selected. For example, suppose you want the user to select a date only from the current week.
Then use the follwing syntax:

Date := SelectDate(SystemDate + ' FREEZEWEEK');

 76 TOPAZ Tutorial

USING THE POP-UP CALCULATOR

Offering a pop-up calculator at the appropriate places in your application is a sure-fire way to keep your
end-user happy. Amazingly, you can display a completely functional desk-top calculator with a single, trouble
free line of code:

Calculator;

or, if you wish to do something with the results of the users calculator:

Result := Calculator;

where Result contains the numerical output of the Calculator as a string, or the empty string, if the user quit the
Calculator with the <Esc> key.

When your program pops-up the TOPAZ Calculator, the following display is seen by the user:

+)))))))))))))))))))))))))))),
* 0.00 *
* +*
* *
* C CE ==)) 7 8 9 / *
* *
* +\- Import 4 5 6 * *
* *
* ==))-))- Esc 1 2 3 - *
* *
* Scroll Lock 0 . = + *
)))))))))))Memory)))))))))))
* 0.00 *
* *
* M+ M- M* M/ MR MC *
.))))))))))))))))))))))))))))-

ScrollLock will be automatically turned off. If the keyboard is not an enhanced keyboard, NumLock will
be automatically turned on.

The "LCD" displays, frame, text, and trigger keys are all in their own colors as specified by the color
scheme you have set up with Set_Calc_Color_To. The top display ("0.00") is the Accumulator, where results
of operations are stored and displayed. The row underneath the Accumulator is the Register (shown blank above),
which accepts numbers as they are keyed in. The memory display ("0.00") is shown just below the word

 TOPAZ Tutorial 77

"Memory" and displays the contents of the single memory location. The "+" sign seen to the right of the Register
shows the pending operation (i.e., what operation will take place operating between the Accumulator and
Register). The action of the keys are as follows:

<0>..<9> Adds the digit to the Register, on the right (like a conventional calculator).

<.> (Decimal point) Adds a decimal point to the register on the right (unless a decimal point already
exists).

<==))-))-> (Enter key) Combines the Accumulator and Register with the pending operation, puts the result in the
Accumulator and clears the Register. <Enter> with no pending operation will cause the
Calculator procedure to exit and return control to the calling routine, returning the current
contents of the Accumulator.

<+> <-> <*> </> Set the operation to be performed. If an operation was already pending, it will be performed.
Dividing by zero, or producing a result in the Accumulator that exceeds the specified format
will cause an Overflow error message to appear and the operation will be cancelled.

<==)) Backspace> Removes the digit or decimal point on the right side of the Register.

<\> Changes the sign of the number in the Register (unless the Register is blank).

<C> Clears the Calculator's Accumulator and Register (but not Memory).

C<E> Clears the Calculator's Register (but not the Accumulator or Memory).

<Esc> Causes the Calculator to exit, returning an empty string.

<M> The first keystroke of a keystroke-pair, pertaining to how data is handled in Memory:

<M><+> Perform any pending operation between the Accumulator and Register, and add the resulting
Accumulator value to Memory.

<M><-> Perform any pending operation between the Accumulator and Register, and subtract the
resulting Accumulator value from Memory.

<M><*> Perform any pending operation between the Accumulator and Register, and multiply Memory
by the resulting Accumulator value.

<M></> Perform any pending operation between the Accumulator and Register, and divide Memory
by the resulting Accumulator value. Dividing by zero will cause an overflow error message
to appear and cancel the operation.

 78 TOPAZ Tutorial

<M><R> Transfers the value in memory to the Register. The prior contents of the Register will be lost.

<M><C> Clears Memory. The Accumulator and Register are not effected.

<I> Causes the calculator to go into "import" mode. The calculator will disappear, revealing
the entire underlying screen, and the cursor will be placed in the center of the screen. The
user can then use the cursor keys to place the cursor on any number on the screen.
Pressing <Enter> will cause the number to be "pasted" into the Register, and the Calculator
will be re-displayed. The previous contents of the Register will be lost. If the cursor was
not on a number, the Register will not be effected. If the number to be imported exceeds
the specified format, an Overflow error message will appear and the operation will be
cancelled.

<ScrollLock> Causes the calculator to go into "move" mode. A message to this effect will appear in the
"lcd" display area, and the cursor keys can be used to move the calculator to anywhere on
the screen. Pressing <Esc>, <Enter>, or turning <ScrollLock> off will cause the calculator to
return to its normal mode.

Here is an example of causing the calculator to pop up during data entry on a numeric field, when the user presses
the <F10> key:

procedure Calc; FAR;

var Result : String;
begin
 Result := Calculator;
 if Result <> '' then SGBuffer := Result;
end;
.
.
.
procedure Example;

var amount : Real;
begin
 Set_FKey(F10, @Calc);
 SayGet(10,10,'Amount',Amount,_R,6,2);
 ReadGets;
 .
 .
 .
end;

To customize the operator of the calculator, see Set_Calc_Color_To, Set_CalcWindow_To, SaveCalcConfig,
and RestoreCalcConfig in the Technical Reference section.

 TOPAZ Tutorial 79

PICKING AND TAGGING FROM LISTS

Experienced programmers know that friendly application programs permit the user to pick from a list
of items, rather than require the user to type the name of the item. This kind of interface usually is implemented
with a "point-and-shoot" style: a window pops up, and the list of items to be selected from scrolls in the window
using a highlighted moving bar. Pressing <Enter> signifies that the highlighted item is chosen, while pressing
Escape means the user rejects all items. One of the most common usages for this method is selection of a file
from a directory list.

Normally this kind of interface requires quite a bit of programming on the part of the software author.
With TOPAZ, you can build "point-and-shoot" into your programs with as little as one line of code!

As an example, let's say that you want the user to select from a list of DBF files on the current directory.
The list of files should appear in a window located at 10,10,20,20. For colors, you want file names to appear as
yellow on black, with the moving bar in black on green. The filename selected should be stored in a string
variable called Filename. Here's how:

Set_PickWindow_To(10,10,20,20,SingleLine,'');
Set_Pick_Color_To(Yellow, Black, Black, Green);
Filename := PickFile('*.DBF');

That's all there is to it! The predefined constant SingleLine specifies that the window is drawn with the
single line box parts. The empty string specifies that there is no header to be displayed on the top line of the box.
The variable Filename will be returned in uppercase, and will be the empty string if the user pressed the <Esc>

key. A built-in feature of PickFile is that file names will be arranged in alphabetical order.

Next, suppose that you want the header string "Select", and you want all DBF files listed, but don't want
the extension to be displayed. In that case:

Set_PickWindow_To(10,10,20,20,SingleLine,'Select');
FileName := PickFile('*.DBF NOEXTENSION');

PickFile will still return the full filename (with extension).

If you want for both files and directories to appear in PickFile, the clause ADDDIRECTORIES causes
directories to be added to the file list. Directories are distinguished from files in the display by being enclosed
by square brackets. PickFile returns the directory name (without brackets). Your program can detect whether
the user selected a directory by examining the global record PickFileResult. In the example below, the user can
change directories and navigate the entire directory tree on disk by selecting the directory and pressing enter:

repeat
 fn := PickFile('*.* ADDDIRECTORIES');
 if fn='' then Exit;
 if (PickFileResult.Attr and Directory) = Directory then ChDir(fn);

 80 TOPAZ Tutorial

until (PickFileResult.Attr and Directory) <> Directory;

The loop continues until the user either presses <Esc> or selects a file.

What about selecting from lists other than filenames? The TOPAZ function PickList does this, but
requires that you write a user defined function to return the nth string item in the list. As an example, suppose
you construct a string array of 100 items which defines the list you wish to pick from. The code for this would
be:

var List : array[1..100] of String[8];
.
.
.
{$F+}
function ListMaker(var n:integer) : String;
begin
 ListMaker := List[n];
end;
{$F-}
.
.
.
Set_PickWindow_To(10,10,20,20,DoubleLine,'');
i := PickList(@ListMaker, 1, 100, 1);

The parameters of PickList are: the pointer to a FAR string function that returns the nth item of the list,
the smallest item number to be displayed, the greatest item number to be displayed, and the starting item number.
PickList then returns which item was selected, or 0 if the user pressed the <Esc> key. Your "ListMaker" function
can refer to arrays, but can also return a field of a record in a database. In other words, PickList gives you a way
to scroll through and pick a record from a database. Refer to page 383 for hints and examples on how to do this.

NOTE: The parameter to your "ListMaker" function must be declared as a var parameter of type integer.

PickList and PickFile both permit the user to point-and-choose from a scrollable list of items or
filenames. In certain applications, however, you would like the user to be able to "tag" a collection of one or more
items or filenames.

TOPAZ permits you to build tagging into your interfaces, via TagItems and TagFiles. These functions
take exactly the same arguments as PickList and PickFile, respectively. However, whereas PickList returns the
ordinal number of the item picked, TagItems returns the total number of items tagged. Similarly, whereas
PickFile returns the name of the file picked, TagFiles returns the number of files tagged. In either case, a returned
value of zero means that nothing was tagged (i.e., the user pressed the <Esc> key).

After a call to TagItems or TagFiles, you will know how many items or files were tagged. But which
items or which files were tagged? These are given by the companion functions TaggedItem and TaggedFile.
Each time you call TaggedItem it returns the next ordinal number in the item array that was tagged, in the order
it was tagged. Similarly, each time you call TaggedFile, it returns the file name that was tagged, in the order it
was tagged.

 TOPAZ Tutorial 81

To see how this works in practice, let's examine a few code examples. In the first example, we wish the
user to tag a set of filenames for some kind of processing we have in mind. For the example, let's just say we want
to merely list them back to the screen:

var i,n:integer;
begin
 n := TagFiles('*.DBF NOEXTENSION'); {lets tag from a list of dbfs}
 for i := 1 to n do
 WriteLn(TaggedFile); {then print the filenames tagged on the screen}
end;

That's all there is to it. Tagging items is only slightly more involved. As the following example suggests,
we want to tag from a list of 4 state names, and display what was tagged on the screen:

uses pick;
{$F+}
function StateName(var i : integer) : string;
begin
 case i of
 1: StateName := 'CA';
 2: StateName := 'NY';
 3: StateName := 'IL';
 4: StateName := 'TX';
 end;
end;

var i, n, k: integer;
begin
 n := TagItems(@StateName, 1, 4, 1);
 if n > 0 then
 for i := 1 to n do
 begin
 k := TaggedItem;
 WriteLn(StateName(k)); {StateName must be passed a VAR parameter}
 end
 else
 {...nothing was tagged} ;
end.

TaggedItem or TaggedFile will return empty strings after the last item or filename is returned (or no
prior call to a tag function was made).

A subtle distinction that will occur to you has to do with the order that TaggedItem and TaggedFile
returns data. By default, these functions return data in order they were tagged. By calling Set_Tag_Order_Off,
data will instead be returned in the order the data was displayed.

At run time, use the <Space> bar to tag an item or filename. An arrow will point to the tagged item. Use
the <Space> bar to untag as well. Pressing <Enter> ends the tagging session. Pressing <Enter> when no items have
been tagged will emulate PickList/PickFile (returns 1 item tagged). As with PickList, colors are determined by
Set_Color_To. The color of the triangular tag indicator is determined by Set_Highlight_To.

 82 TOPAZ Tutorial

VIRTUAL FILES AND LINKED LISTS

One of the reasons a dBASE programmer would leave the dBASE environment (or any of the other
popular dBASE dialects) for Pascal would be the freedom of implementing linked lists in memory. To those
programmers unfamiliar with the concept of linked lists, here is a brief tutorial on the topic: All languages have
the ability to store data in memory. In dBASE, for instance, one could store a string (let's say a filename) in a
"memory variable":

STORE 'customer.dbf' TO FileName

or in Pascal: FileName := 'customer.dbf';

But suppose you wanted to store all the filenames in the current directory in memory. Assuming you
could determine the files in the current directory (and there are some round-about ways to do this), you could then
store the names like this:

STORE 'customer.dbf' TO FileName1
STORE 'invoice.dbf' TO FileName2
STORE 'program.prg' TO FileName3
.
.
STORE 'lastfile.dbt' TO FileNameN

Since dBASE is interpreted, you could go on defining new variables all day long. In Pascal however,
you might let Filename be an array, but you would still need to specify in your code just how big the array is:

var Filename : ARRAY[1..??] of String[12];
 s : SearchRec;
 i : integer;
begin
 FindFirst('*.*', AnyFile, s);
 i:=1;
 while not DOSError = 0 do
 begin
 Filename[i] := s.name;
 FindNext(s);
 Inc(i);
 end;
end;

In this example, we have purposely not filled in the extent of the array, since there is absolutely no way
of knowing how many filenames DOS will return. The answer might be to just make the array huge--much
bigger than anything practical--say 1000. But think how wasteful this is: we are setting aside 13,000 bytes just
to store only a few filenames on the average. And what if you wanted to store fully qualified path names? They
require 80 bytes per name. Get the picture?

 TOPAZ Tutorial 83

A good way to handle this kind of situation is to allocate memory at runtime (not compile time) as it is
needed, and then put the data into this newly allocated memory. No wasted bytes here. Furthermore, when you
allocate memory in Pascal, you do so in the heap (not the data space). This is generally a good thing, since there
is normally lots of heap space, whereas data space is limited to 64K and often quite precious.

The odd thing about allocating memory in this way is that there really isn't a variable equated with it.
Instead, you have to store a pointer variable to point to it. When the next piece of data comes along to store, of
course you need another pointer. We seem to be back where we started from, since we don't know how many
pointers we are going to need. Fortunately, there is a classic technique that bails us out of this problem: part of
the data we are going to save in the allocated memory is a pointer to the next batch of data. The concept is a little
like climbing a ladder. Given that you can get on the first rung, and that you can get from one rung to the next,
you can get to anywhere on the ladder. The result is called a "linked list". By having just 1 4-byte pointer
variable, you can create and follow a chain of linked data items on the heap at run time, and do so until you run
out of memory!

There are a few considerations that you should know about when deciding whether or not to use a linked list
structure.

 1. All the data is stored in memory. The benefit is that working with the data is very fast!! Skipping from
record to record required no disk I/O, so the process is virtually instantaneous. Also, you only use the
memory you need. You don't need to know ahead of time how much memory to allocate - you just use
what you need as you need it. There are 2 problems however. First, memory is subject to instant
erasure from a power failure or a user re-boot! And second, you are limited to the amount of memory
that is available on your machine. (With the growing memory capabilities on today's market, this
second issue can be overcome easily enough.)

 2. The data "items" or records are linked together "logically", not "physically", the way they are on a disk.
The advantage is that you can easily rearrange the real order of the records by simply changing the
record links. You can also quickly and easily insert a new item into the middle of the list, or pick a
record out of the middle and discard it, without rewriting the whole list. Sorting the list becomes
possible (without using indexes!). The problem is that positioning to a specific record in the list is now
a little more complex. If you want to get to record number 10, you cannot just "seek" to the desired disk
location, and access the data. You must start from the first record (or "head" of the list), and skip 9
records to get to number 10. This isn't a very big "time" consideration because memory access is so
fast! If you were writing code to manage a linked list, you would need to handle record positioning
carefully.

 3. The most compelling disadvantage to linked lists is that they are not easy to program. You need to
"think" about things differently. This leads to subtle coding errors that can be very difficult to debug.

 84 TOPAZ Tutorial

Considering the disadvantages, some programmers think twice before implementing link lists for their
applications. Especially since the easy alternatives of 1) a simple array structure, and 2) a disk file are so much
more seductive when programming time is at a premium, or a deadline is looming.

The VFILES unit lets you create and build linked lists with almost the same syntax that is used with
files! We call linked lists "Virtual Files", since we are dealing with data that looks like it is being read from and
written to disk, but actually resides only in memory. What the VFILES unit does is to act as a generic linked-list
manager, receiving instructions from calls to DBF4 routines.

Using virtual files is therefore amazingly easy. Simply put "VFILES" in your "USES" statement and
you can then call the USE procedure like this:

USE ('anyname VIRTUAL FILE', @YourBuffer, Sizeof (YourBuffer));

You must provide a unique name (up to 10 Characters long) just like when you use a disk file. This
name will be the virtual file ALIAS. A simple example of building a linked list through virtual files is:

uses crt, DBF4, dialog, sayget4, VFILES, vidpop;
type SALESMEN_Record = Record
 Deleted : Boolean;
 _FIRSTNAME : String[16];
 _LASTNAME : String[16];
 _AGE : LongInt;
 _HIRED : String[10];
 _TERRITORY : String[16];
 end;
var
 SALESMEN : SALESMEN_record;

begin
 USE('*Salesmen* VIRTUAL FILE', @Salesmen, SizeOf(Salesmen));
 ClrScr;
 repeat
 with SALESMEN do
 begin
 SayGet(5,15,'First Name: ',_FIRSTNAME, _S, 16, 0); PICTURE('@!');
 SayGet(5,16,' Last Name: ',_LASTNAME, _S, 16, 0); PICTURE('@!');
 SayGet(5,17,' Age: ',_AGE, _I, 3, 0);
 SayGet(5,18,' Hired: ',_HIRED, _D, 10, 0);
 SayGet(5,19,' Territory: ',_TERRITORY, _S, 16, 0); PICTURE('@!');
 end;
 Menu('Top Bottom Next Previous Edit Add Quit');
 case MenuChar of
 'T' : GoTop;
 'B' : GoBottom;
 'N' : begin
 SKIP(1);
 if dEOF then GoBottom;
 end;
 'P' : SKIP(-1);
 'E', 'A' : begin
 ReadGets;
 if (MenuChar = 'E') and (RecCount>0)
 then REPLACE

 TOPAZ Tutorial 85

 else APPEND;
 end;
 end;
 ClearGets;
 until MenuChar = 'Q';
end.

Looking at this code, you might wonder "other than the USE statement, how does this code differ from
working with a file called SALESMEN.DBF?" The answer is that it is identical. That's the beauty of VFILES.

dBASE database files have a header which certain TOPAZ routines use to determine the nature of the
data being stored. BROWSE, for instance, can only work if it knows the structure of the file. If you attempt to
BROWSE a virtual file, as in the above example, TOPAZ will generate an error unless the virtual file has been
prepared.

It is possible to transfer the structure of a real file to a virtual file for the purposes of browsing and
reporting. The syntax to accomplish this is:

CopyStruFrom (Area);

where "Area" is the number of the work area which has a disk file open with the same structure as the currently
selected virtual file. Once you do this, you can use the power of BROWSE to review and modify the contents of
the virtual file just as if it were on disk. Remember though, changes made to records in the virtual file won't affect
data in the disk file. So, if you are working with a VIRTUAL FILE copy of a disk database, you must keep track
of which records were modified and do the updating yourself!

There are a number of things you can do with virtual files that you can't (or wouldn't) do with real files.
For example, to remove a record from a real file involves marking the record for deletion (with DeleteRec), and
then PACKing the file which rewrites the file. When you think about it, there is no way to just remove a record
from a disk file without rewriting the file. The situation is quite different for a virtual file. In this case, a record
is removed just by reassigning the value of a few pointers and deallocating memory, a process which is
comparatively instantaneous. Similarly, physically inserting a record in a real file also involves re-writing the
file, while inserting a record into a virtual file is as fast as allocating a little more memory and shuffling some
pointers around. For these reasons, TOPAZ gives you two procedures unique to virtual files: SnipRec (to
instantly remove the current record), and InsertRec (to insert an new record just after the current record).

Another nice property of virtual files is that new data need not be added to the end of the file. TOPAZ
permits you to add new records in any of five appending modes: FIFO (default), LIFO, INSERTION,
ASCENDING, and DESCENDING. The appending mode is specified as a clause in the USE statement, like so:

USE('*mylist* VIRTUAL FILE LIFO', @mylist, SizeOf(mylist));

Unlike a disk file, a virtual file (linked list) can add records in any of a number of ways. The default type
of virtual file is FIFO, or First-In-First-Out. New records APPENDed to the file are added to the end of the file.
In LIFO ordering, or "Last-In-First-Out", new records are APPENDed to the beginning of the file. Using

 86 TOPAZ Tutorial

INSERTION ordering new records are APPENDed just after the current record (equivalent to InsertRec). After
inserting a record, the newly inserted record becomes the current record. Finally, with ASCENDING you append
records in alpha ascending order, and with DESCENDING records are appended in descending order. However,
you cannot set the mode to ASCENDING or DESCENDING if there is more than one record in the file.

It is possible to change the ordering mode of a virtual file once the file has been USEd with the
command:

Set_VFileMode_To (FIFO);

Valid arguments are the pre-declared constants FIFO, LIFO, INSERTION, ASCENDING, and DESCENDING.

Two other procedures related to the order of storage in virtual files are PushRec and PopRec. PushRec
is identical to APPEND--it will add records according to the current setting of ordering mode. PopRec will put
the appropriate record into your User Record and then "snip" that record out of the virtual file. In this sense, the
virtual file can be treated as a "stack". For example, if we PushRec records A,B, and C in FIFO mode, when we
successively call PopRec we will get back A,B and C. In other words, records are returned and removed oldest
first. Had we been in LIFO mode, we would get back C, B, and A. In this case, records are returned and removed
most recent first.

Linked lists are also capable of storing data of variable length. This is very different from dBASE data
storage, where all records in a file must have exactly the same length. For many applications, fixed length records
are quite acceptable. However, not all data can be neatly assigned to a certain length.

For instance, suppose you wished to write a text file browsing utility. It is natural and efficient to think
of each line of text as a record. Some records will have no bytes in them (blank lines), some records may even
have 255 bytes in them, and most will likely have 40-60 bytes. Obviously fixed length records of 255 bytes
would work, but would be wildly wasteful of memory (only 256 lines of text could be stored in 64k of memory!).
Instead, let the virtual file adjust the size of each record to just accommodate the amount of data needed to be
stored.

The structure of TextLine must begin with a WORD value that contains the total size of the structure
(excluding that word):

type LineRecord = record
 Size : Word;
 Data : String;
end;

var TextLine : LineRecord;

To specify that a virtual file is to store variable length records, USE the file with a buffer size of zero:

USE('*Text* VIRTUAL FILE', @TextLine, 0);

 ^------- Zero length buffer

 TOPAZ Tutorial 87

You can now APPEND each line of text in the text file to a record in your virtual file:

while not eof(f) do
 begin
 Readln (f, TextLine.Data);
 TextLine.Size := Length (TextLine.Data) + 1; {add 1 for length byte}
 APPEND;
 end;

To complete your text viewing utility, you only need to SKIP through the virtual file and display
TextLine.Data to the screen.

In the above example, the record contains a string of characters. Records could just as easily have been
a more complicated structure, perhaps a screen image, audio data, digitized laboratory data, graphics, or a
database record. Data can even be mixed together, if you are careful to compute the length of the record properly.

The record structure in the above example could be expanded to include more information, and perhaps
more than one character string, however, there is an important consideration. The compiler allocates storage in
the record structure for the largest possible use of each type of variable. This is not an issue if the other elements
of the record are numbers or other fixed length fields. The only time this is a problem is with strings where you
are attempting to save storage as in the example above.

If you had 2 strings in the record, as:

type TwoLineRecord = record
 Size : Word;
 Line1 : String;
 Line2 : String;
end;

var LinesOfText : TwoLineRecord;

then the amount of storage you can save is somewhat different. When the compiler allocates storage for the
LinesOfText variable, it allocates 2 bytes for the Size variable, 256 bytes for the Line1 string, and 256 bytes for
the Line2 string. If you were to build two 50 character strings, and then set size to 102 (the two 50 character
strings + 2 for the two string length bytes), you would not get any part of the second string stored!! That is
because the Line2 string doesn't start in memory until the 257th byte after the Line1 string. The VFILES routine
will only store the Size value, and the first 102 bytes following that. This includes all of Line1, and 51 unused
bytes in the Line1 string. For this reason, the (single) variable length string should be the last thing declared in
your record structure. In the above example, the size of the variable record should be computed as:

LinesOfText.Size := 256 + Length (LinesOfText.Line2) + 1;

NOTE: When virtual files have no structure associated with them, as when CopyStruFrom has not been called,
or for variable length records, positioning the file past the last record will cause the record buffer to be filled with
zeros. Thus, any strings in that structure will be set to a zero length. Also, the TOPAZ routines that reference

 88 TOPAZ Tutorial

the database structure (ie. BROWSE, EditRecord) cannot be used to view the contents of the VIRTUAL FILE
in this case - since the structure is unknown.

Since virtual files use memory, there are some important considerations the conscientious programmer
will be interested in. For example, how can the programmer establish whether there is sufficient memory to hold
the data, and how can the program detect and recover from running out of memory. To start with, virtual files will
by default use the heap area of the computer's memory for storing records. If Expanded Memory (abbreviated
EMS) or Extended Memory (abbreviated EXT, and also known as XMS memory) are available, it is possible
to take advantage of these memory resources. This can be done by specifying which memory resource to use
when opening the file:

USE ('*list* VIRTUAL FILE TO EMS', @YourBuffer, Sizeof (YourBuffer));

The resource clauses recognized are:

TO HEAP Use the Heap {the default setting}
TO EMS Use Expanded memory
TO EXT Use Extended memory
TO BIGGEST Use the larger of heap or EMS (but not EXT)

NOTE: In order for virtual files to access extended memory, the computer must be running under DOS 3.0 or
greater. You must also

add DEVICE=HIMEM.SYS /NUMHANDLES=128

to the CONFIG.SYS file and

copy HIMEM.SYS to the root directory.

You can find the HIMEM device driver in the HIMEM.ZIP file on the TOPAZ distribution disk(s).

When the clause TO BIGGEST is specified, TOPAZ only considers the heap and Expanded Memory.
The reason that Extended Memory is not a candidate is that there is currently no standard for controlling which
programs and drivers have access to Extended memory. For instance, it is common for disk cache programs to
use Extended Memory, but TOPAZ has no way to determine that this is the case. Thus, use of Extended memory
in a virtual file requires that the programmer specifically designate it in the resource clause.

The discussion that follows reviews how you can test for the size and availability of the various kinds
of memory so you can make the decision as to which memory resource to use.

You should also be aware that the Virtual Files unit always uses HEAP space to store a number of
housekeeping items, regardless of which kind of memory will be used to store data.

In order to determine if you have enough HEAP space to accommodate your requirements, you need
to know the following:

 TOPAZ Tutorial 89

The amount of HEAP storage required for the Links to your virtual files records can be calculated using
the constant LinkSize. You can calculate the amount of HEAP required for these links as follows:

HouseKeepingHeapRequired := MaximumRecordsExpected * LinkSize;
if HouseKeepingHeapRequired <= AvailableMemory('HEAP')

then
... there is enough room ...

If you are planning on using EXPanded memory, the memory management routines use about 256
additional bytes of the HEAP to hold the EXPanded memory page map:

HouseKeepingHeapRequired := (MaximumRecordsExpected * LinkSize) + 256;
if HouseKeepingHeapRequired <= AvailableMemory('HEAP')

then
... there is enough room ...

If you are using EXTended memory, you need to have room for a few EXTended memory management
structures. First, is the EXTended memory page buffer. The amount of HEAP storage required for the
EXTended memory buffer is currently 16K, (16,384 bytes). This value can be referenced using the global
ExtPageSize. Referencing the value this way ensures that it will still be accurate if we change the size in the
future, or make it user adjustable. In addition to the EXTended memory page buffer, the EXTended memory page
map (300 bytes) is also stored on the HEAP. The calculation would be:

HouseKeepingHeapRequired := (MaximumRecordsExpected * LinkSize) + ExtPageSize
+ 300;
if HouseKeepingHeapRequired <= AvailableMemory('HEAP')

then
... there is enough room ...

So far, we have computed the amount of heap necessary to manage the virtual file, no matter what
memory resource will be used. Next, we must be able to compute how much memory is necessary to store the
actual record data, and then compare this with the total amount of memory available for a given memory type.
Calls to the TOPAZ functions RequiredMemory and AvailableMemory answer this question. For example, to
determine if we have enough EMS to store 1000 records, where each record has a size of 57 bytes, we can write:

if RequiredMemory('EMS',1000, 57) <= AvailableMemory('EMS') then
begin {data will fit into EMS}
 ...

Altogether, there are five TOPAZ routines that the programmer can use to address memory management
of virtual files:

function AvailableMemory(MemoryType : String) : LongInt;
function CurrentMemory : String;
function EvaluateBiggest : String;
function FreeSpace : LongInt;
function RequiredMemory(MemoryType : String; RecordCount : LongInt;

RecordSize :LongInt) : LongInt;

These routines are documented with examples in the Technical Reference section.

 90 TOPAZ Tutorial

NOTE: Many applications of virtual files don't require that the programmer call these routines, as virtual
files are often small and transient. However, if you need to establish a large file in memory, or are building a
commercial application for a variety of hardware, you will probably make use of these routines to be confident
that your program will be bullet-proof.

To see an interesting example of the use of virtual files, see the sample program VIEW.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s), which when compiled can be used as a general purpose
text file viewing utility.

 TOPAZ Tutorial 91

SETTING THE COUNTRY CODE

TOPAZ permits the programmer to write code that will function equally well in different geographic
areas: America, Britain, France, Germany, Italy, Spain, Quebec, and Russia. Each of these areas has its own date
format, day and month names, terms for boolean variables, and even decimals points . For example, the code:

SayGet(10,10,'Post data to Journal? ',PostOK, _L, 1, 0);
ReadGets;

will only permit the user to assign the values 'Y','T' (for "Yes" or True) and 'N','F' (for "No" or False). If the
program is to be used in Germany, however, pressing 'Y' for "Ja" is not quite intuitive. To solve this problem,
the programmer can instruct TOPAZ to work with German conventions just by invoking the
SET_COUNTRY_TO procedure:

SET_COUNTRY_TO(Germany);

(the predefined constants are USA, Britain, Italy, France, Germany, Spain, Quebec, and Russia). In this example,
TOPAZ will now accept 'J' or 'R' for True, 'N' or 'F' for False, CDOW will return 'Montag'..'Sontag', CMONTH
will return "Januar ".."Dezember ", dates will be in the format 'DD.MM.YY', and decimal points will be
represented by commas.

TOPAZ programs automatically checks to see if a country code has been specified in the DOS
environment (commonly set with AUTOEXEC.BAT or CONFIG.SYS). If one of the six recognized country
codes is found in the environment, TOPAZ will automatically call Set_Country_To during your program's
initialization. The default country is USA.

To change the country setting from DOS add the following line to your AUTOEXEC.BAT file or simply
enter it at the DOS prompt:

C> SET COUNTRY=<country code>

Supported country codes are: USA = 001, Britain = 044, Italy = 039, France = 033, Germany = 049, Spain =
034, Quebec = 002, and Russia = 007.

Example: C> SET COUNTRY=49

 92 TOPAZ Tutorial

THE REPORT GENERATOR - REPGEN.EXE

An important aspect of many applications is the ability to print reports. The most common type of
report is a nicely formatted, sorted, columnar list of records in a database. Such reports generally require page
headers, page breaks, and totals on numerical fields. Often the user requires that similar records be grouped, with
subtotals computed and printed. And not all reports need be sent to the print device; often the user will want to
see exactly the same report only on the terminal, or in certain instances it is desired to redirect the report to an
ASCII text file. Rather than having to laboriously write the code to do all this for each report, TOPAZ provides
you with a report generator, REPGEN.EXE. With REPGEN you create reports in a menu-driven environment
and your program may then invoke these reports with one line of code!

REPGEN is invoked from DOS as follows:

C>REPGEN

REPGEN will prompt you for the name of the database (DBF) file, and the name of a "report form" file.
This file, with a default extension of .RPT contains all of the specifications of the report needed to actually print
the report at run time. If you are creating a new report, you may assign any name you choose for this file. If you
are modifying a report, use the report form file that was originally specified.

REPGEN will then present its report generator display. If you are familiar with the dBASE command
CREATE REPORT FORM, you will feel right at home with REPGEN. The top line of REPGEN is a menu bar
that allows you to select "Options" (setting global parameters of the report), "Groups" (specifying how the report
groups records, if any), "Columns" (specifying which fields of the database are reports, their widths, column
headings, etc.), "Locate" (allowing quick selection of a column), and "Exit" (allowing the report to be saved,
displayed or printed). Pressing the left and right arrow keys (with NumLock off) will permit you to move through
this top menu line. The current menu choice is highlighted, and the sub-menu and data associated with this choice
is shown "pulldown" style. To select a submenu, press <Enter> when on the desired menu choice. The submenus
are described below:

 TOPAZ Tutorial 93

AVAILABLE REPGEN OPTIONS

The options menu specifies parameters that are global to the report:

Page title. A string, up to 255 characters in length, that will appear as the title of the report centered at the top
of each page. You can specify multiple title lines by separating each line with a semicolon (";").

Pre Printer Code. A string of characters to be sent to the printer prior to the page title. This string can be used
to set a special font (such as Double Width mode on dot matrix printers, or a title font on Laser Jet printers). All
characters are treated as literals and sent to the printer without interpretation, except for numbers bracketed by
"<" and ">". Brackets permit you to specify a decimal ASCII code to be sent as part of the printer code sequence.
For example, the Escape character would be represented as <27>. Pressing <F10> when defining printer codes
pops up a list of printers (HPLaser Jet, Epson, Toshiba, OkiData, Citizen, Panasonic) and then a list of printer
codes to be selected. Codes supported are i.e. Pica and Compressed for EPSON printers, and Landscape, Portrait,
Reset, Courier, Courier Bold, and Line Printer for HP Laser Jet printers.

Post Printer Code. A string of characters to be sent to the printer following the page title. As with Pre Printer
Codes, <F10> permits you to select pre-defined printers and printer codes from a list.

Page width. The number of characters per row of the report, excluding the left and right margins.

Left margin. The width of the left margin in spaces.

Right margin. The width of the right margin in spaces.

Lines per page. The total number of lines per page.

Double space report. Setting to "Yes" will cause the report to be double spaced.

Page eject before printing. Setting to "Yes" will cause a page eject to be sent to the printer before the report starts.

Page eject after printing. Setting to "Yes" will cause a page eject to be sent to the printer after the report is
finished.

Plain page. Setting to "Yes" will inhibit the page title, date and time, and page number from printing.

Groups. Permits you to print one or two levels of subtotals and specify the text to be printed at the start of each
new group of records. You must ensure at runtime that the database is indexed on a key that will result in the data
grouping in the proper way. The group submenu choices are:

Group on Field. Specifies the field that causes the report to be grouped. When a change in the field
data is detected, the report prints an extra line displaying the new field data.

 94 TOPAZ Tutorial

Group heading. A string which preceeds the display of the new group heading.

Summary report only. Setting to "Yes" will cause only the summary data to print.

Page eject after group. Setting to "Yes" will cause a page eject to be sent to the printer after the group
is printed.

Sub-group on Field. Specifies the field that causes a second level of grouping.

Sub-group heading. A string which preceeds the display of the subgroup heading.

Columns. Specifies the exact contents of each column in the report. Use the <PgUp> and <PgDn> keys to select
among existing columns. To add a new column, press <PgDn> to the first undefined column. To insert a column
ahead of an existing column, press <Enter>, then <Ctrl-N>. The column submenu choices are:

Contents. The dBASE field name assigned to the current column. Pressing <Enter> will allow editing
of this parameter. When editing, three special keys are permitted:

 TOPAZ Tutorial 95

<F10>. This will cause a moving-bar menu of available field names to appear in a window.
The desired field can be selected with <Enter> (or abandoned with <Esc>). The field chosen
when then be pasted to "contents".

<Ctrl-U>. Deletes the current column.
<Ctrl-N>. Inserts a new column.

REPGEN permits you to generate the contents of the column at runtime, if you wish to print data that
is more complex than a single field. To do this, enter a "@" in column 1 followed by any identifying string you
wish. REPGEN will recognize this as an instruction to be handled at runtime. For more detailed information,
refer to Set_Report_Column_To, on page 580.

Heading. A string that will be displayed on each page of the report over the current column. Defaults to the
dBASE field name. You can specify multiple heading lines by separating each line by a semicolon (";").

Pre Printer Code. A string of characters to be sent to the printer prior to the column's data. A pick list
of printers and printer codes can be activated with <F10>. Codes are currently supported for the
following printers:

HP Laser Jets Series II
Epson LX-800
IBM Proprinter
Okidata 190/2410
Toshiba P351X
Citizen 120-D
Panasonic KX-P1180

For a complete lisitng of all the different codes supported for the different printers, refer to the
Appendix of this manual.

Post Printer Code. A string of characters to be sent to the printer after the column's data has been
printed. A pick list of printer codes can be activated with <F10> as above.

Width. The number of characters to be occupied by the column. Defaults to the field width specified
in the DBF structure.

Decimal places. The number of decimal places to be displayed (for real numbers only). Defaults to the
number of decimals in the DBF structure.

Commas. Setting to "Yes" will cause numeric fields to be formatted with commas (i.e., 12345.67 will
print as 12,345.67).

 96 TOPAZ Tutorial

Total this column. Setting to "Yes" will cause numeric fields to be totaled. Totals will be printed at the
end of the report.

Locate. This presents a moving-bar menu of columns. Selecting a column returns you to the appropriate column
in "Columns". Locate is not available if no columns have been created.

Exit. Permits saving, previewing, or abandoning the report form. The exit submenu choices are:

Save. Saves the current report form to the RPT file specified at the start of REPGEN.

Display. Displays the report to the monitor. After a screen full of data, you will be printed to "Press any
key for more or <Esc> to Quit". Printer codes will not be displayed. This option can be used as a preview
mode to see how your report will appear at runtime.

Print. Prints the report to the printer. Pressing <Esc> will terminate printing and return to REPGEN's
menu. This can be used to preview your report to see how the report will appear at runtime.

Abandon. Returns to DOS without saving the report format file.

Once you have created (or modified) a report using REPGEN, your program can cause a complete,
formatted report to printed with as little of one line of code. You will need to include the TOPAZ unit REPORT4
in your USES statement. The simplest example of displaying a report is:

uses DBF4, REPORT4;

begin
 USE('customer', @customer, SizeOf(Customer));
 ReportForm('custrept');
end.

In this example, CUSTREPT is the name of the report form file (CUSTREPT.RPT) created with
REPGEN. The procedure ReportForm will then send the report to the screen. ReportForm's string parameter
permits you to specify a number of command clauses, as follows:

TO PRINT. Instructs ReportForm to send the report to the printer.

TO SCREEN. Instructs ReportForm to send the report to the screen. This is the default condition.

TO FILE <filename>. Instructs ReportForm to send the report to a file named "Filename". The default extension
of the file is .TXT.

MESSAGE="Message String". Instructs ReportForm to print the message string on the monitor while the report
is printing. The message will appear wherever the cursor location was prior to calling ReportForm.

BLINK. Instructs ReportForm to blink the Message String (if given).

 TOPAZ Tutorial 97

If the printer is not ready, ReportForm will present a windowed message on the terminal identifying the
problem. The user may then solve the problem (printer not on line, out of paper, etc.), causing ReportForm to
remove the message and proceed printing, or may press the Escape key to abort the report.

A slightly more complex example of ReportForm that uses some of these command clauses is:

uses DBF4, REPORT4;

begin
 USE('customer', @customer, SizeOf(Customer));
 ReportForm('custrept TO PRINT MESSAGE="Report Now Printing");
end.

This will cause the report form CUSTREPT.RPT to be sent to the printer, during which time the
message "Report Now Printing" will be displayed on the monitor.

 98 TOPAZ Tutorial

PRINTING PAGE IMAGES

For most reports, you will find TOPAZ's ReportForm (and REPGEN.EXE) versatile enough to quickly
get professional and complete reports. But not all reports are tabular in nature. For example, mailing labels, tax
return forms (like the Federal 1040), and grids (such as a monthly calendar) are definitely not arranged by fixed
columns filled by fixed data elements. In that case, it's "back to the drawing board".

What complicates matters when designing such reports is that printers do not generally go "backwards".
This means that even though data is spatially arranged in clusters on the page, you must output characters left to
right, top to bottom in order for the report to properly appear on the printed page. The contortions one must go
through to correctly print a complex document can be a programming nightmare. Of course maintaining such
code, to make even a minor change, can be a disproportionately large effort.

Take for example the job printing mailing labels 3-across. Data is arranged like this:

Record 1 Name Record 2 Name Record 3 Name
Street Address Street Address Street Address
City State Zip City State Zip City State Zip

Starting with the current record, you print the name. Fine. The printer, however, will expect the see the
name of the next record. So, you SKIP(1) to the next record and print the name you find. And SKIP(1) again to
get the third name. You can now send a carriage return and line feed to the printer, and SKIP(-2) to get you back
on record 1. You can now print street addresses and the city line in pretty much the same way. So you had to
SKIP back and forth through the database, which is inefficient and involves a lot of disk I/O. Is that so awful?
Well, maybe not. Problem is, suppose there are two address lines, the second address line is optional, and you
certainly don't want to print a blank on the label just because there is no second address. Suddenly, the whole
problem just got more complex and you wind up spending the rest of the afternoon wrestling with the code.

Fortunately, TOPAZ lets you print directly to anywhere on the page in the order you want the data to
be processed. In other words, you can think of the printed page as a "page image", just like you think of the
display as a "screen image", consisting of columns and rows that can be randomly accessed. Thus, you can use
TOPAZ's AtPrint procedure just like the AT procedure. The 3-across mailing label example described above
becomes as trivial as can be:

{print client mailing labels, 3 across, from a database. Notice that the vars
LabelWidth, LabelHeight, and NumberAcross permit you to print labels with any
format you want!}

USE('client', @client, SizeOf(client));
LabelWidth := 35; { label is 3.5 inches wide }
LabelHeight := 6; { 6 lines from label top to label top }
NumberAcross := 3; { number of labels across the sheet }
PageHeight := 66; { 60 for most laser printers}

Set_PageSize_To(NumberAcross*LabelWidth, pageHeight);
GoTop;

 TOPAZ Tutorial 99

Row := 1;
while (not dEOF) do

 begin
 for i := 0 to NumberAcross-1 do
 begin
 if not dEOF then
 begin
 r := Row;
 with client do
 begin
 AtPrint(LabelWidth*i+1, r, _NAME);
 Inc(r);
 AtPrint(LabelWidth*i+1, r, _ADDR1);
 Inc(r);
 if TRIM(_ADDR2)<>'' then
 begin
 AtPrint(LabelWidth*i+1, r, _ADDR2);
 Inc(r);
 end;
 AtPrint(LabelWidth*i+1, r, TRIM(_CITY)+' '+_STATE+' '+ _ZIP);
 Inc(r);
 end;
 SKIP(1);
 end;
 Row := Row + LabelHeight;
 if dEOF or (Row + LabelHeight -1 > PageHeight) then
 begin
 EJECT;
 Row := 1;
 end;
end;

Notice there is no unnecessary disk I/O, no unnecessary temporary variables, the problem of missing
second address lines is neatly solved, and future changes can be readily implemented. Also notice that EJECT
is called as the last step. This is vital, since nothing will actually be sent to the printer until either EJECT or
PrintPage is called. This is because AtPrint actually causes data to be stored to a page image in memory, and
EJECT (or PrintPage) is used to signal TOPAZ that the page is now complete and can be output to the printer
in the order the printer expects.

Another frequent obstacle is the need to send printer codes before and after data. For example, suppose
we wanted the _NAME field in the above code sample to be printed in bold. TOPAZ permits you to embed
printer codes anywhere on the page image by calling AtPrintControl.

Thus, the line:

AtPrint(column, row, _NAME)

becomes:

AtPrintControl(column, row, #27'B');
AtPrint(column, row, _NAME);
AtPrintControl(column+30, row, #27'N');

 100 TOPAZ Tutorial

AtPrint and its related group of routines can be used to easily code grids, charts, and other specialty
documents.

NOTE for Users of Laser Printers: For most laser printers you will have to call Set_Page_Size_To
to change the number of lines to 60 from the default of 66 (height).

 TOPAZ Tutorial 101

ERROR HANDLING

TOPAZ maintains several global variables that inform the programmer that an error has occurred in
a TOPAZ operation.

DbfError. DbfError is the main TOPAZ error flag, and is in the TZCOMMON unit. This variable
is set by many if not most TOPAZ procedures and functions. Its possible values are:

 1-209 : Same as Pascal's IOResult (see "Run-time errors" in your Borland/
Turbo Pascal manual)

 210 : Not a dBASE database file
 211 : Invalid field type was detected
 212 : Tried to read a record beyond the valid range
 213 : Only a partial record was read from disk
 214 : Work area already occupied
 215 : Work Area not in use
 216 : User data buffer wrong size
 217 : Insufficient memory
 218 : Improper NIL pointer passed as a parameter
 219 : Unable to flush buffer of current file
 220 : Invalid Parameter
 221 : Index Not Open
 222 : Corrupted Index File
 223 : Index file version number mismatch
 224 : Cyclical Relation
 225 : Exclusive use of file required
 226 : BrowseNotActive = 226
 227 : Insufficient disk space
 228 : Unbalanced Push and Pops, { e.g., PopColors with no prior PushColors}
 254 : TOPAZ internal error occurred
1003 : Invalid Memo address
1004 : Disk is full
1005 : Memo write error
1007 : Memo is already open
1012 : Insufficient disk space to pack Memo
1017 : Cannot lock memo file
1018 : Cannot unlock memo file
1019 : Invalid Memo operation
1100 : Not a valid operation on Linked List
1101 : Virtual-File Manager Unit not linked in
1102 : Virtual-File Memory-Management error
1103 : Invalid operation
1200 : Record not locked
1201 : File not locked
1202 : Semaphore file error

 1203..1299 : Network Error
1300 : File format not supported

Refer to the procedure OnErrorHalt in TZCOMMON.PAS for up-to-date information.
Thus if DbfError is zero then the previous dBASE file operation was successful; if DbfError > 0 then

a condition exists that may require special attention.

 102 TOPAZ Tutorial

TOPAZ permits you to detect and handle these errors by two different approaches, called
Set_Autohalt_On and Set_Autohalt_Off. The default mode is AUTOHALT ON. In this mode, when TOPAZ
detects an error TOPAZ will automatically halt your program and display a descriptive message on the monitor.
The significance of this is that your code does not have to check DbfError after each operation where errors are
possible. TOPAZ then automatically returns to DOS. In certain cases, such as when the application is part of
a batch file or DOS-shell menu system, the error message may be immediately overwritten by the next program.
Your program can set the global Boolean in TZCOMMON called WaitOnError (False by default) to True.
TOPAZ error messages will then require a keystroke before returning to DOS.

When AUTOHALT is OFF, TOPAZ sets the value of DbfError and returns control to the next line in
your program. Your code should check DbfError after each database and index file operation, taking appropriate
action. You can also take advantage of the TOPAZ string function MESSAGE which returns a description of the
error that occurred. See the file ONERROR.INC, found in the SAMPLES.ZIP file on the TOPAZ distribution
disk(s), for an example how to handle errors when AUTOHALT is OFF.

NOTE: For an up-to-date list of DbfError values refer to the file TZCOMMON.HED in the
TOPAZSRC.ZIP file on the TOPAZ distribution disk(s).

Printer Status. TOPAZ allows you to check whether the printer is ready (powered up and online)
before you write to the printer. The boolean function PrinterReady can be used prior to printing a report. IF you
have the TOPAZ Spooler installed, PrinterReady does not actually check the physical printer. Rather, it reports
on whether the spooler is able to accept additional characters to spool. To determine the status of the physical
printer itself when the spooler is installed, TOPAZ provides the RealPrinterStatus function. This function returns
a byte with a bit pattern indicating whether or not the actual printer is selected and has paper, and emulates the
usual BIOS printer status function (Interrupt 17H, AH=2). For an example of the usage of this function, refer to
page 425.

Spooler Errors. The routine SET_PRINTER_TO allows the programmer to configure the print
spooler either parallel or serial port (LPT1, LPT2, COM1, COM2). If an error was detected in this process, the
global byte SpoolError will be set to a positive number. The possible values of SpoolError are:

 0 : Operation successful
244 : LPT device number missing
245 : LPT device number out of range
246 : No physical print device found
247 : Invalid or insufficient number of parameters specified
248 : Invalid baud rate
249 : Invalid parity
250 : Invalid word length
251 : Invalid number of stop bits
252 : Unable to initialize COM port for print spooling
253 : Not enough memory for spooler buffer

TimeError. Errors that occurred during time math operations are returned in the global integer
TimeError. Values of TimeError are:

 TOPAZ Tutorial 103

 0 : Operation successful
239 : Missing colon (e.g. '01:0203')
240 : Non-numeric character (e.g. '01:X2:03')
241 : Invalid time ('44:72:61')
242 : Negative time (e.g. -600.1 hours)

 104 TOPAZ Tutorial

INTERFACE TO SAYWHAT?!
SCREENS AND MOVING-BAR MENUS

Another Software Science product, the SAYWHAT?! screen generator, gives programmers and
computer users the ability to create elaborate and colorful screens, windows, help panels, and moving-bar menus.
Screens and complete moving-bar menus are designed in a simple-to-use "what you see is what you get" editor,
and saved in a compressed file. Up to 100 screens can be combined into a single library file. SAYWHAT?!
provides a number of screen display engines: a resident screen manager, a non-resident screen manager that runs
your application program as a child process, and a Pascal unit that allows the engine to be built right into your
finished code. One of the TOPAZ units, VIDPOP, is designed to provide significant support for SAYWHAT?!
screens and screen libraries. This section is designed to help you understand the way in which SAYWHAT?!
screens, windows, and moving-bar menus can be easily incorporated into your Pascal programs.

The VIDPOP unit provides the programmer with a variety of routines relating to screen display, menus,
and screen management. VIDPOP was originally written to provide an interface for screens created with our
screen design tool SAYWHAT?! but it has grown to include more generic routines for screen saving and menu
creation and other screen management, independent of SAYWHAT?!

SAYWHAT?! is a special screen editor that saves screens in disk files as compressed binary images
of the individual screens. In addition, those screens may be combined into libraries of up to 100 screens each.
While the SAYWHAT?! package includes various methods to display the screens in any programming language,
we provide the VIDPOP unit specifically for Pascal programmers who want its additional sophisticated functions.

SAYWHAT?! screens are stored compressed in such a way that de-compressing them can be achieved
with lightning speed, in fact our testing has shown that screen display rates as fast as 30 full screens per second
can be achieved even on a CGA display on a standard 8088 CPU machine using the VIDPOP unit's routines.

SAYWHAT?! screens can be saved as full-screen images or as sub-screen images which in effect are
windows. The VIDPOP routines will detect which kind of screen it is prior to display and in the case of sub-
screens will properly place them at the position on the screen that they were created in the SAYWHAT?! editor.

SAYWHAT?! screens can be designed with moving-bar menus built right in. These menus are activated
automatically, simply by displaying the screen. The data for the menu items is taken right off the screen after it
is displayed so no code to operate the menus is contained in the screen file itself, rather the routines in VIDPOP
can detect that a screen contains a menu area and will activate it and wait for the user to make a selection and then
make that selection information available to the program in several ways.

For smaller programs, individual screens can be displayed via one of two simple procedure calls. The
simplest method is PopSqz which will display a standard SAYWHAT?! .SQZ file from disk. This method is
generally used for a prototype or very simple program when the programmer wants to do the minimum and when

 TOPAZ Tutorial 105

speed and the number of files are not of primary concern. The other single screen display routine is PopScreen
which expects to find the screen data in memory either having been linked in as an .OBJ file or loaded into
memory from disk just once, sometime prior to the call to PopScreen.

For larger programs that have many screens, a more practical method is to store the screens in one or
more libraries. Since libraries may have as many as 100 screens stored in them and since VIDPOP lets you have
as many as 10 disk based libraries you can see that it would take a fantastically large program to exceed the
capacity of VIDPOP. If libraries are linked into a program as .OBJ files, the only limit is the amount of memory
available in the target machine.

The VIDPOP unit also includes routines that can be used independent of screens created with
SAYWHAT?! These procedures and functions allow you to create moving-bar menus, save and restore the run-
time screens or any "window" area on the screen, and others allow you to determine the current video mode and
other screen related information.

The rest of this section will describe the various topics mentioned above and show some examples of
displaying SAYWHAT?! screens. For more detailed information about syntax and usage, refer to the information
on each procedure and function in the Technical Reference section.

DISPLAYING SAYWHAT?! SCREENS. There are two basic methods for displaying SAYWHAT?!
screens and each of those methods has several variations. First, individual screens may be accessed either from
disk or from data linked in at compile time. The second basic method involves displaying screens from screen
libraries.

The simplest method of displaying a SAYWHAT?! screen is with the PopSqz procedure. All that is
required is that the screen file must be available on disk within reach of your application. All you have to do is
call PopSqz with a string parameter which contains the path and filename. If no path is specified PopSqz will look
only in the default directory. It is not necessary to supply the file extension. Here is an example showing how to
display a screen from a .SQZ file on disk using PopSqz:

program PopSqzExample;
uses vidpop;
begin
 PopSqz('C:\saywhat\myscreen');
end.

A better way, although slightly more complicated, is to use the PopScreen procedure which will display
any SAYWHAT?! screen from data that is already in memory. The advantage of PopScreen is that no disk access
is required and thus the display performance is better than PopSqz. Screen data can be put in memory either by
reading the contents of the screen from disk at run time and keeping it in an array of byte or by linking the data
in at compile time. There are several advantages to the link method:

 1. Screen data becomes a permanent part of your program and cannot be lost.

 106 TOPAZ Tutorial

 2. Data is actually stored in the code segment leaving the data segment and heap free for more volatile
data.

 3. No time is spent at run time to read screen data from disk

The PopScreen procedure requires a single parameter which must be a pointer to the screen data. Here
is a sample program showing how to incorporate an .SQZ file into your program file and display the screen.
Assume that you have a screen named MYSCREEN.SQZ. To create a linkable version of the screen, use a
converter (e.g. the BINOBJ.EXE program supplied with Turbo Pascal) to create an .OBJ file from the .SQZ file.
Use a command line like the following:

C>BINOBJ myscreen.sqz myscreen.obj myscreen

program PopScreenExample;
uses vidpop;
{$L myscreen.obj} { link screen data in as an OBJ file }

procedure MyScreen; External; { name specified in BINOBJ session }
begin
 PopScreen(@MyScreen);
end.

NOTE: Here is a sample one line batch file to create .OBJ files from .SQZ files; it could be called

B.BAT. (A similar batch file could be created to deal with screen library files.)

BinObj %1.SQZ %1 %1

It calls BINOBJ.EXE to make <screen>.OBJ from <screen>.SQZ and gives the procedure the name:
<screen>

Here is an example of using Myscreen.SQZ to create myscreen.OBJ as procedure "myscreen":

C> B myscreen

SCREEN LIBRARIES. There are three ways to display screens from a library:

 1. Leave the library on disk and read each screen from the library as needed,

 2. read the library onto the heap at runtime and display screens directly from memory, or

 3. link whole libraries in at compile time and display screens from memory.

The three procedures for accessing disk based screen libraries are:

OpenLibrary, PopLib, and CloseLibrary. Disk-based screen libraries must be opened prior to
displaying screens from them and this is done by calling the OpenLibrary procedure. You must specify a logical

 TOPAZ Tutorial 107

library number, the library filename including any extension, and whether or not you want the library file handle
to be freed up between screen display calls. Since up to ten disk-based screen libraries may be open at the same
time you must assign each one with a number at the time the library is opened. The parameter WhichLib is the
logical library number which may be any number between 1 and 10. In order to conserve file handles it is
recommended that the StayOpen parameter of the OpenLibrary procedure be False. To achieve maximum speed
of screen display the StayOpen parameter should be True, in which case the screen library will not be closed
between calls to PopLib. When no more screens from a particular library will be displayed again call the
CloseLibrary procedure in order to recover memory used for the library header, regardless of whether you
specified StayOpen when the library was opened. The global boolean variable, ScreenFound, will be set to False
if a specified screen is not found in the specified library and it was not displayed. Here is an example to
demonstrate accessing disk-based screen libraries:

program PopLibExample;
begin
 { open a library and assign it as logical library #1 }
 OpenLibrary(1,'screens.lib',true);
 { display the screens named "SCREEN1" and "SCREEN2" }
 PopLib(1,'screen1');
 PopLib(1,'screen2');
 { now display the tenth screen in the library }
 PopLib(1,LibScreenName(1,10));
 { Close the logical library #1 }
 CloseLibrary(1);
end.

Sample procedure to display screens from libraries linked in at compile time:

procedure PopLibMem(PtrToLib : Pointer; ScreenName : String8);

Example:
program PopLibMemExample;
{$L mylibrary }
procedure mylibrary; external;
begin { main program block }
 PopLibMem(@mylibrary,'MainMenu');
end.

 108 TOPAZ Tutorial

MOVING-BAR MENUS

Nowadays users expect their software to have moving-bar menus as an integral part of the interface to
the program. TOPAZ permits you to easily build both vertical and horizontal moving-bar menus into your
applications. These menus can be nested, and can have context-sensitive "Lotus"-style help lines.

Building a menu into your program requires three simple steps:

 1. A menu must be designed. That is, its contents and location must be specified.

 2. The menu must be displayed and activated. Once activated, TOPAZ will control the motion of the
moving bar and interpret keystrokes entered by the user.

 3. The results returned by the menu must be interpreted by your program, and you then can branch
appropriately.

If you already have SAYWHAT?! menus, or plan to use SAYWHAT?! to create menus, the first step
is achieved entirely by SAYWHAT?!. The second step, displaying and activating the menu, is accomplished just
like the display of any SAYWHAT?! screen. This means that your menu can be as simple as an SQZ file, or can
be a screen in a library file, or can be linked directly into your code. See the previous discussion on displaying
SAYWHAT?! screens for exact details.

If you are not using SAYWHAT?! menus, creating menus solely with TOPAZ is also quite
straightforward. There are two methods that are available.

First, display the menu choices on the screen, arranged horizontally or vertically using the AT procedure
to place the strings. An example of a horizontal menu that would appear on the top row of the screen is:

AT(1,1,'Add Edit Delete Browse Quit');

 TOPAZ Tutorial 109

An example of a vertical menu located in the center of the screen is:

AT(35,10,'Add');
AT(35,11,'Edit');
AT(35,12,'Delete');
AT(35,13,'Browse');
AT(35,14,'Quit');

These menus will be in the color specified by the most recent call to SET_COLOR_TO. To activate
the menu, the TOPAZ procedure CreateMenu is called:

CreateMenu(1, 1, 80, 1, Cyan, Blue);

The parameters of CreateMenu are the coordinates of the upper left corner and lower right corner of
the menu area, and the foreground and background color of the moving bar. In the above example, we are
specifying the menu area in the first row of the screen (and therefore goes with our horizontal menu example
shown above), and want the moving bar to appear in cyan on blue. To activate the vertical menu example, we
could call CreateMenu as follows:

CreateMenu(35, 10, 35, 14, Yellow, Black);

Note that CreateMenu does not draw a box (use the BOX command prior to calling CreateMenu if you
wish to enclose your menu in a box). Remember that CreateMenu only activates a menu area, handling the
display of the moving bar and reading the keyboard for you.

The other method of designing and activating moving-bar menus is a single call to the Menu procedure:

Menu('Add Edit Delete Quit');

displays a boxed, centered horizontal moving-bar menu, while

Menu('Add;Edit;Delete;Quit');

displays a boxed, centered vertical moving-bar menu. The box style, position, heading, and colors can be easily
set with the Set_MenuWindow_To and Set_Menu_Color_To commands.

 110 TOPAZ Tutorial

The last step of the process, getting the results of the menu, is common to both SAYWHAT?! and
TOPAZ-generated menus. TOPAZ maintains a set of global variables called MenuString, MenuChoice,
MenuChar, and MenuKey. It is recommended that you not declare your own variables of the same names in your
program. If you do, however, remember to access the TOPAZ variables as Vidpop.MenuString, etc. The meaning
of these variables is:

MenuString Contains the first word of the selected menu choice, all uppercase, with leading and trailing
blanks removed. If the menu choice was "Add a Record" then MenuString will contain
"ADD". If the user pressed the <Esc> key, MenuString will contain an empty string.

MenuChar Contains the "trigger" key (usually the first letter of the menu item) that was selected, such as
<Q> if "Quit" was selected. MenuChar is of type Char, and is always returned in uppercase.
If the user pressed the <Esc> key, MenuChar will contain the space character (' ').

MenuChoice Contains the numeric value of the choice. For instance, if the user selected the third choice off
the menu, MenuChoice would contain 3. MenuChoice is of type Byte. If the user pressed the
<Esc> key, MenuChoice will contain zero.

MenuKey Contains the keystroke last pressed while the menu was active. If the user pressed the <Enter>

key to select a menu choice then MenuKey = #13. This variable is used with
Set_MenuFKeys_To to detect function keys. Additionally, if the value of MenuKey is in the
set [^D,^S,^X,^E] then the user pressed one of the arrow keys at right angles to the normal
motion of the menu. When this occurs the three other Menu variables will indicate which
menu item was highlighted at the time.

 TOPAZ Tutorial 111

Here is a complete listing of all "arrow" keys detected and reported by TOPAZ (via the global char MenuKey):

Horizontal Menus Vertical Menus
User Presses MenuKey is set to MenuKey is set to
<Up Arrow> ^E N/A
<Down Arrow> ^X N/A
<Left Arrow> N/A ^S
<Right Arrow> N/A ^D
<Page Up> ^R N/A
<Page Dn> ^C N/A
<Home> ^A N/A
<End> ^Z N/A
<ESC> Esc, #27, ^[Esc, #27, ^[

Turn this behavior off by setting: VIDPOP.EnableUpDownMenuExit := False

Note that all keys except <Home> and <End> are WordStar convention. <Home> and <End> were chosen to
have a simple mneumonic.

In the following examples, we illustrate just how easy it is to activate a menu and branch on the results.
In the first example, we use a SAYWHAT?! created menu, and in the second example we use a TOPAZ created
menu:

{display and activate a SAYWHAT?! moving-bar menu:}
repeat
 PopSqz('mymenu');
 if MenuString = 'ADD' then AddRecord;
 if MenuString = 'EDIT' then EditRecord;
 if MenuString = 'DELETE' then DeleteRec;
 if MenuString = 'BROWSE' then BROWSE('');
until (MenuString = 'QUIT') or (MenuString = '');

{display and activate a menu without using SAYWHAT?!}
repeat
 AT(1,1,'Add Edit Delete Browse Quit');
 CreateMenu(1, 1, 80, 1, Black, LightGray);
 case MenuChar of
 'A' : AddRecord;
 'E' : EditRecord;
 'D' : DeleteRec;
 'B' : BROWSE('');

 end;
until MenuChar in ['Q',' '];

{simplest method!}
repeat
 Menu('Add Edit Delete Browse Quit');
 case MenuChoice of
 1 : AddRecord;
 2 : EditRecord;
 3 : DeleteRec;

 112 TOPAZ Tutorial

 4 : BROWSE('');
 end;
until MenuChoice in [0,5];

In all three examples, we loop on a menu until the user chooses "Quit" or presses <Esc>. The first
example illustrates the use of MenuString, the second illustrates the equivalent use of MenuChar, and the third
illustrates the equivalent use of MenuChoice.

Normally, the <Esc> key terminates the menu session. If you wish to disable this feature, you can set the
TOPAZ global boolean MenuEscapeEnable to False. Also, by default vertical menus exit when the left or right
cursor keys are pressed (and similarly horizontal menus exit when the up and down cursor keys are pressed).
The programmer can control this behavior by means of the two global booleans EnableLeftRightMenuExit and
EnableUpDownMenuExit.

By default, moving-bar menus always highlight the first menu choice when the menu is first activated.
If you wish to highlight a choice other than the first, you can do this by setting the TOPAZ global byte MenuSeed
to the numeric value of that choice.

A word about keystrokes when a menu is active. The moving bar can be moved by either arrow key or
the space bar. The user can specify a choice from the menu by pressing the first character of the trigger key
choice, a highlighted character of the choice (if a character is in a different attribute), or by pressing <Enter> when
the bar is on the desired choice. Pressing <Esc> terminates the menu session.

If you are interested in attaching a "Lotus"-style help line to appear when each menu choice is
highlighted, use the TOPAZ procedure Set_MenuHelp_To. This procedure will call a procedure you provide
whenever the user moves the menu light bar. Your procedure may display anything you like, such as a one-line
descriptive message, or a SAYWHAT?! screen. Your procedure must be declared FAR and must not be nested.
Here is an example of Set_MenuHelp_To:

{$F+}
procedure LotusStyleHelp;
begin
 Case MenuChoice Of
 1 : AT(1,1,'Add a new record to the database');
 2 : AT(1,1,'Edit the current record ');
 3 : AT(1,1,'Return to DOS ');
 end;
end;
{$F-}
{then later in your program...}
Set_MenuHelp_To(@LotusStyleHelp);
AT(1,2,'Add Edit Quit');
CreateMenu(1,2,80,2,Black,LightGray);

In this example, a horizontal menu will be activated on row 2, and a descriptive message will appear
on row 1 that is tailored to each of the three menu choices.

 TOPAZ Tutorial 113

Sometimes your menus will require even greater complexity than illustrated so far. For example, you
may need the ability to branch to a special procedure when a function key is pressed while the menu is active.
TOPAZ provides the procedure Set_MenuFKeys_To to accommodate these unusual situations. Refer to page
547 for examples on the usage of this feature.

When a menu is activated, TOPAZ automatically turns off the NumLock setting on the user's keyboard.
Normally, this is appropriate. You can disable modifying the NumLocks setting by means of the global boolean
IgnoreNumLock. Setting this to true causes moving-bar menus to leave the NumLocks setting alone. In those
cases where the keyboard has a cursor key cluster separate from the numeric cluster ("enhanced keyboard"), it
is better to leave the NumLock setting alone, and IgnoreNumLock is set automatically to true.

Finally, a moving-bar menu is normally a single component of a complete "menu tree". That is, menus
choices frequently will result in other menus being activated. Nesting menus means that you will need to store
the current menu environment before proceeding to call the next menu, and restoring the menu environment upon
return. TOPAZ gives you a very easy way to do this with the PushMenu and PopMenu procedures. Before
calling a nested, or lower level menu, call PushMenu. PushMenu will store all of the settings of the current menu.
After processing the lower-level menu, call PopMenu to restore those settings.

NOTE: The TOPAZ Set_Coordinates_To procedure will have no effect on routines in the VIDPOP unit. All
coordinate parameters must be specified in Pascal coordinates and in the normal Column,Row sequence.

 114 TOPAZ Tutorial

ADDING MOUSE SUPPORT

Typically you don't have to do anything to have Mouse support in your TOPAZ programs. If a Mouse
driver is detected, TOPAZ will take advantage of it and automatically provide support. You can use the Mouse
to move between SayGet fields, move the cursor in fields, move around in BROWSE, EditText, and EditMemo,
etc. Dialog boxes support the Mouse if you use the BUTTONS clause to specify choices, or if DialogBox is
already waiting for a keystroke. Pick and Tag as well as PickFile and TagFiles also support the Mouse when it
is available.

Additional Mouse Support: To add additional Mouse targets to your applications, here is a basic
example:

procedure AskForStartOrCancel;
var e : EventRec;
const
 StartButton = 1; { target ID values must be > 0 }
 CancelButton = 2; { (in the range of 1..MaxInt) }

begin
 PushWindow(1,1,80,MaxAvailRows);
 PushMouse; { push any existing mouse targets and disable the mouse if

enabled }
 {paint targets:}
 Box(30,10,35,12,1,'');
 At(32,11,'Start');
 { add a mouse target for the above Start "button" }
 AddTarget(30,10,35,12,StartButton, LeftButtonReleased);

 Box(30,14,35,16,1,'');
 At(32,15,'Cancel');
 { add a mouse target for the above Cancel "button" }
 AddTarget(30,14,35,16,CancelButton, LeftButtonReleased);

 EnableMouse; { show the mouse and enable targets }
 GetEvent(e); { wait for a mouse or keyboard event }

 case e.WhichEvent of { test what kind of event it was }
 Mouse : case e.TargetID of

 StartButton : StartProcess;
 CancelButton : ;
end;

 Keyboard : case upcase(e.Key) of
'S' : StartProcess; {Start}
'C' : ; {Cancel}

 end;
 end;

 DisableMouse; { dispose of the target list }
 PopMouse; { restore any previously existing targets

 and the prior mouse enabled state }
 PopWindow;
end;

NOTE: TOPAZ uses only negative target ID's internally and you should only use positive target ID's.

 TOPAZ Tutorial 115

Types in TZCOMMON for Mouse Support:

 type
 EventType = (Null, Keyboard, Mouse);
 EventRec = record

 KeyStates : Byte;
 case WhichEvent : EventType of

 Keyboard : (ScanCode : Byte;
 Key : Char);

 Mouse : (x,y : Byte;
 WindX,WindY : Byte;
 ButtonMask : Byte;
 TargetID : Integer;
 DoubleClick : Boolean);

 end;

Constants in TZCOMMON for mouse support:

 {Default values:}
 const

TOPAZMouseEnabled : Boolean = True;
MouseDriverPresent : Boolean = False;
MouseIsVisible : Boolean = False;
AutoMousePlacement : Boolean = True;
DoubleClickThreshold : Word = 5;
LeftHandedMouse : Boolean = False;

 { Constants used to construct bit masks,
 "or" them together to combine them: }

LeftButtonDown = 2;
LeftButtonReleased = 4;
RightButtonDown = 8;
RightButtonReleased = 16;
CenterButtonDown = 32;
CenterButtonReleased = 64;

ReservedID = -32767; { target id number }

Functions in TZCOMMON for Mouse Support:

 EventPending : Boolean; { used in place of KeyPressed }
 MouseX : Byte;
 MouseY : Byte;
 IsCenterButtonDown : Boolean;
 IsLeftButtonDown : Boolean;
 IsRightButtonDown : Boolean;

Procedures in TZCOMMON for Mouse Support:
 ResetMouse;
 EnableMouse;

 116 TOPAZ Tutorial

 DisableMouse;
 AddTarget(x1,y1,x2,y2, IDCode : Integer; ButtonMask : Byte);
 OnMouse(p : pointer);
 GetEvent(var e : EventRec); { used in place of ReadKey }
 PushMouse;
 PopMouse;
 SetMouseXY(x,y : Byte);
 GetMouseXY(var x,y : Byte);
 HideMouse;
 ShowMouse;
 SetMouseWindow(x1,y1,x2,y2 : Byte);
 ShiftMouseTargets(xShift,yShift : Integer);
 TextMode(m : word); { resets mouse for new mode }
 ClrScr; { use of this vs. Crt.ClrScr avoids mouse droppings }
 OnDoubleClick(udf : Pointer); { Sayget4.hed }
 SetMousePointerTo(PointerStyle : PointerStyleType;

 CharNo : Byte;
 AttrStyle : AttrStyleType;
 AttrFG, AttrBG : Byte);

Disabling the Mouse: Since Mouse support is automatic in your application programs, there may
be times when you don't want to support a Mouse, even if there is a mouse driver installed. Here is what you do
at the start of your program:

 procedure TurnOffMouseSupport;
 begin
 TopazMouseEnabled := False; { a must! }
 DisableMouse;
 end.

To re-enable the mouse if you disabled it as shown above:

 procedure TurnOnMouseSupport;
 begin
 TopazMouseEnabled := True;
 ResetMouse;
 end;

To learn more about Mouse support refer to the sample programs PHONE.PAS, ONMOUSE.PAS, and
CATNMOUS.PAS (a game).

 TOPAZ Tutorial 117

PRINT SPOOLING

Print spooling is the capability of software to buffer and send characters to a print device while the
application program executes other tasks. The consequence of this is that the application program and the user
do not have to wait for a report to be completely sent to the printer in order to continue processing data.

TOPAZ offers you the ability to send your list device output quickly to the buffer of a spooler, after
which your program can continue execution. The spooler then handles sending characters to the printer "in
background". In addition to spooling normal WriteLn(Lst...) output, the TOPAZ spooler can also spool anything
that you have buffered in memory. For instance, if you wish to print the contents of a text file, you can BlockRead
the file to a temporary buffer and then instruct the spooler to load characters from that buffer (with the
SpoolArray procedure).

The spooler routines permit you to specify which printer port to spool to (SET_PRINTER_TO), the
"duty cycle" of the spooler (Set_Spooler_Packetsize_To), and the size of the spooler's internal buffer
(Set_Spooler_Size). In addition you can suspend and resume printing, or cancel the spooler's current print buffer
(using StartSpooling, StopSpooling, and CancelSpooling). You can inquire as to how many characters are
remaining to spool with the function CharsInSpooler, and can request a screen report of the current configuration
and status of the spooler with the procedure ListSpoolData.

Any errors that occur when configuring the spooler with SET_PRINTER_TO will cause the global byte
SpoolError to be set to a positive number. If any error occurred during SET_PRINTER_TO, the spooler will not
be installed. The function SpoolErrorMsg returns the error as a string.

A simple example of code that uses the spooler is shown below. Details for the spooler commands can
be found in the Technical Reference section.

 118 TOPAZ Tutorial

SET_PRINTER_TO('LPT1'); { set the list device to LPT1 }
if SpoolError > 0 then { check the outcome }
begin
 WriteLn(SpoolErrorMsg); { annunciate the problem }
 exit;
end;
Set_Spooler_Size(8000); { Set buffer to 8000 bytes }
WriteLn(lst, ' Table I');
Writeln(lst, '100 Random Numbers');
Writeln(lst);
for i := 1 to 100 do WriteLn(Random:8:3);
Writeln(lst,#12); {send a form feed at the end of the report}

{the spooler will handle the printer and your program can go on to the next
task}

When your program terminates, the spooler's exit procedure checks to see if there are characters waiting
in the buffer to be printed. If characters are remaining, the message:

Printer spool buffer still contains characters. Please wait...
Press <Esc> to cancel printing
Characters left to print: nnnn

will appear on the monitor. The user can wait for the spooler to finish printing, or press <Esc> to empty the buffer
and allow the program to terminate.

NOTE: Declaring SPOOLER in a USES statement will automatically activate the spooler with its
default buffer size and other default settings.

 TOPAZ Tutorial 119

THE TOPAZ HELP SYSTEM

End users have expectations that modern database applications come with help systems. There are
several levels of help systems which you will commonly see implemented:

Level 0: No help at all. The user is expected to know what to do and when to do it at each keystroke. Menu
choices, for example, are supposed to be self-explanatory just by their wording or context. The
programmer, of course, feels that only a very unsophisticated user would experience any confusion
with his/her program. The interface is intuitive -- to the programmer, that is. What we as
programmers often overlook is that all users have some pre-defined concept of what the program
interface should be, based on whatever set of programs they currently use on a frequent basis. A
WordPerfect user --and obviously there are many of these--has no great affinity toward a pulldown
menu system, but does expect that the program will make heavy use of the function keys (perhaps
pressing <F3> right away for help). A Lotus user, on the other hand, feels comfortable with Lotus-style
"slash" menus and one-line help messages. Even DOS, in its recent release of 5.0, has help available.
And on it goes. Designing a program (to be used by ones other than the programmer) with no help
may not be readily accepted and might not even be used.

Level 1: Static Instructions embedded in screen images. An example of Level 1 help are the words
"Press the first letter of the choice you want now", appearing near a
menu of choices. The program is just explaining what it is waiting for. What distinguishes help from
instructions is that help is unnecessary for the operation of the program. Contrast the previous
example with the instructions "Press any key to continue...". This is not strictly speaking a help
message, but a command to the user to respond. Embedded help messages are more along the lines
of suggestions, maybe even hints to clarify the current state of the program.

Level 2: Dynamic Help Messages. These normally appear as one-line messages associated with choices in
moving-bar menus. A classic example of Level 2 help are the Lotus-style menus. You can easily
implement this kind of help in TOPAZ using the Set_MenuHelp_To procedure.

Level 3: Pop-up Help. These are screens or windows that pop up over the application when a help key is
pressed. These messages are not aware of the location of the cursor, or what the user is doing at the
time. For example, consider a data entry screen with numerous data entry fields. Pressing the help
key merely presents the user with a screen or window explaining in general terms the function and
purpose of the collection of data fields, or (again in general terms) how to go about editing a field or
move between fields.

Level 4: Context-sensitive Pop-up Help. To be context-sensitive, the help screens or windows are aware of
the menu choice, data entry field, and the like and provide help specific to the currently highlighted
choice or field where the cursor is currently located.

 120 TOPAZ Tutorial

Level 5: Authorable Context-sensitive Pop-up Help. This help works like Level 4, except that the end-user
has the ability to add help screens, or modify those that already exist. The user then can author their
own help system or customize it for their specific needs, as: "..if you still don't know what to put in
the CONTRACT NUMBER field, see Joe in Accounting. He can be reached at extension 1234...".

The higher the level of help in your application the more satisfied your end-user will become.
Moreover, your application will receive greater use for which it was intended, and is much less likely to be
replaced by another system chosen for its "trainability", documentation, or ease of use.

One might think that higher levels of help result in greater software development costs, and a
lengthening of the development cycle. The TOPAZ help system, a level 5 system, is expressly designed to be
"plugged into" each application you wish with a minimum of effort. This can give you a good competitive
advantage: often the ability of a developer to include a context-sensitive help system into a proposed software
project at little or no cost can close the sale.

So, just how do you plug the TOPAZ help system into an application? Just for fun, you might want
to start with one of your own existing TOPAZ applications, following the instructions below.

Step 1: Specify the Help Database and Hot Keys. In the initialization portion of your program, add
TZHELP to your "uses" statement, and a call to Set_Help_To like this;

Set_Help_To('syshelp', F1, AF1, SF1);

The help system stores all help information in a database file which you name. Above, we decided to
call this file SYSHELP, but you are free to invent any name you wish. One caution here - while you
can specify any database extension you wish - the help database also uses a memo file which will have
the extension ".DBT". So you should be careful not to choose a help file name that will conflict with
any existing database or Memo file names. If you don't specify an extension, .HLP is added for you.
The first time you run your program, this file doesn't exist of course, so the help system creates an
empty file. The help system also creates and maintains two index files as well. These are created
using the extensions ".HND" and ".TND". The second parameter is the help key. In this case, we
specified <F1>. The third parameter is the authoring key, and the fourth is the topic key. For the sake
of the example, we have specified <Alt-F1> and <Shift-F1> but of course the choice of hot keys is entirely
up to you. You can also define the default help window location and size, and help window colors at
this point if you like, using the routines Set_HelpWindow_To and Set_Help_Color_To. If you leave
these two calls out for now, you can see how the defaults look.

Step 2: Enabling Help. Just calling Set_Help_To does not activate the help system. You need to call
SET_HELP_ON. So, you can add SET_HELP_ON right after your call to Set_Help_To. The help
system is then enabled.

Step 3: The last step in setting up the help system is to assign a unique value to a "context identifier" var prior
to any routine that waits for keystrokes. The TOPAZ help system provides two global vars for this
purpose: ContextID of type String[18] and ContextNo of type word. You can use either or both of

 TOPAZ Tutorial 121

these vars in any combination to make up a unique context identifier. One way to do this is to set
ContextID to a string that is unique to the current unit, and then reset ContextNo to a unique value
each time you get to a situation where the user might request help. You will have created a unique
string for each potential help situation which is all TOPAZ needs to identify each context.

Where do you need to add ContextID/ContextNo assignments? Before any of the following calls:

BROWSE PickList
Calculator ReadGets
CreateMenu ReadKey
DialogBox PopLib , if a Saywhat
DisplayCalendar PopLibMem * menu will be
Edit PopScreen / present on
EditText PopSqz - the screen
EditMemo SelectDate
EditRecord TagFiles
Menu TagItems
PickFile

For example, here are some instances where ContextID/ ContextNo needs to be assigned:

ContextID := 'MyUnit';
ContextNo := 1;
DialogBox(Key+' not found. Want closest match?', 'buttons=Yes No');

ContextNo := 2;
Menu('Screen;Printer;File CENTERTEXT HEADING="Output to:"');

ContextNo := 999;
Browse('FIELDS [last_name, first_name, firm, city]');

Any combination of ContextID and ContextNo will work, so long as the combination of ID and
number is unique for each occurrence of an activity. If you are retrofitting a mature application with
a help system, stuffing the date and time into the ContextID and ignoring ContextNo is a convenient
and expedient way to get the job done. You will have created a unique string for each potential help
situation which is all TOPAZ needs to identify each context. Some programming editors let you make
Macros that will do just that, guaranteeing a unique string with a single keystroke. However, if you
are building an application and adding help as you go, then you should consider adding more
meaningful information to the context (such as unit name and sequence number, or unit name and line
number, for instance). The payoff for this will occur when working with the TOPAZ Help Editor
which you will need to do as your application develops and you begin to "move things around."

Step 4. Authoring. Having finished Steps 1 - 3, you can now compile and run your application. Your
program will run exactly as before, except that it is now endowed with a complete context sensitive
help system. By pressing the authoring hot key at any point in the execution of the program, you can
add pop-up help windows with your own help text. You can even re-size and re-position each help

 122 TOPAZ Tutorial

window while you author (see the paragraph "Move and Resize Window" in the section "Text Editor
and Editor Commands" in this manual). Once help is authored, pressing the help hot key will instantly
pop up help.

Two of the above TOPAZ activities contain instances where you want multiple and separate detailed
help - Menus and ReadGets. In order to maintain unique help information in these situations, TOPAZ keeps
track of the current MenuChoice (for Menus) and SGFieldCode (for ReadGets) and stores it as part of the help
index.

The observant programmer may suspect a potential problem with this help system methodology. Since
help stores information regarding the activity and item number within that activity, what happens when you
modify your source code? For example, if you created a help screen for the third item in a menu, the help system
now associates particular text with the third item in the menu. If the program is modified, so that a new menu item
is added or removed so that what was the third menu choice now has a new position in the menu, the help file
will not automatically update itself and the help information displayed for the new third item will be incorrect.
What is required is a companion utility to the help system that permits the programmer to adjust help file records
when such modifications are made. The source code to this utility is included in the HELPEDIT.ZIP file on the
TOPAZ distribution disk(s).

 TOPAZ Tutorial 123

INTERRUPT SERVICE ROUTINES IN TOPAZ

A number of TOPAZ routines are Interrupt Service Routines (ISRs) that chain into the BIOS Timer-
Tick interrupt ($1C). These are: Set_Clocks_On, Set_ScreenSaver_On, and using the print spooler, which is
accomplished by putting SPOOLER into your "uses" statement. Ordinarily, once a group of ISRs are installed
in the interrupt vector chain, they must be removed in reverse order. Failure to do so will leave the chain pointing
to code that may no longer reside in memory, and hence a system crash! With the 3.5 version of TOPAZ,
however, these ISRs are managed very carefully by TOPAZ itself such that you are free to activate and deactivate
any of these features (Clocks, Screen Savers, and the Spooler) at any time and in any order you choose. TOPAZ
will manage the interrupt vector chain for you to guarantee its integrity.

But what if you want to attach your own ISR to interrupt $1C? In order to avoid problems, your routine
and TOPAZ must "play ball" with each other. Three routines in TZCOMMON have been made public for you
to use when programming a $1C ISR. They are:

AddISRVector
RemoveISRVector
ChainISRAddress

Although writing an ISR can get very tricky, the usage of these routines is actually quite simple. The rules are:

 1. Initially, you must make a call to AddISRVector, passing to it the address of your ISR routine.
AddISRVector will return a byte "handle" that is unique to your ISR. You must store this value in a var
that you can use later. Once AddISRVector returns, your ISR routine is chained into interrupt $1C and
will be called on the next Timer Tick. Thus, there is no need for you to store the existing $1C vector
(as with GetVec), and you must not install the ISR yourself (with PutVec for instance).

 2. Your ISR will get control each timer tick. When it is ready to return control, it should call
ChainISRAddress, passing its handle, to get a pointer to the next ISR routine in the chain. Your ISR
should then jump to that address.

 3. Your ISR will continue to be called until a call to RemoveISRVector is made. By passing this routine
the ISRs handle, TOPAZ will remove it from the interrupt chain and correctly restore the remainder of
the vectors in the chain. Your ISR should not attempt to restore the chain (such as by calling PutVec).

In addition, two more procedures are available to your program that permit you to temporarily shut
down and then resume all ISR routines. You will need to do this when you "Exec" another program or shell to
DOS. The routines are SuspendISRs and RestoreISRs.

For further information, see the Technical Reference section for each routine mentioned.

 124 TOPAZ Tutorial

TOPAZ SCREEN SAVERS

TOPAZ offers a number of ways to confirm to the user that data processing is taking place. Your
application can spin a rotor (Set_Rotor_On) that rotates a quarter turn each time disk I/O occurs. In addition,
your application can display a progress bar that grows smoothly as either a data file is scanned or a task proceeds
to completion (See Set_Progress_On, StartProgress).

Another method of announcing "I'm alive and well" is available: Screen Savers.

The term "Screen Saver" is a misnomer, of course. TOPAZ screen savers actually use the screen to
display an entertaining "side show" in the background while your application grinds away on a foreground task.
TOPAZ provides three different "side shows" which can be displayed on either the full screen in a window of
your choosing.

Notice we say that TOPAZ screen savers run in the "background". This is an important property of
screen savers: they should update their display occasionally (i.e., once each timer tick, or every 55 milliseconds),
and should "steal" as little time from the foreground process (your application) as possible. Moreover, once the
screen saver is "set in motion", your program is free to continue processing data as it normally would.

Let's look at some examples. In the following code, we start a full-screen saver and wait for a keystroke:

uses crt, tzsaver;

begin
 Set_ScreenSaver_On;
 repeat until KeyPressed;
 Set_ScreenSaver_Off;
end.

If you type in this program and run it, you will probably be surprised to see confetti and streamers
continuously falling all over your monitor. The foreground application -- repeat until keypressed -- waits for a
keystroke and then turns the screen saver off. Admittedly, this example just wastes CPU time. The next example
might be more useful:

uses dbf4, tzsaver, print;

begin
 Set_ScreenSaver_On;
 USE('myfile', NIL, 0);
 SET_PRINT_ON;
 LIST('');
end.

 TOPAZ Tutorial 125

In this example, we turn on the screen saver as before. Then we open the data file MYFILE.DBF and
print each record to the printer. Since TOPAZ has its own exit procedures, we don't bother to close the file or
turn off the screen saver--that will be done for us.

Notice that once the screen saver is on, your program can go about its business without further regard
to the background process. So long as you don't write to the same portion of the screen as the screen saver, you
needn't worry about any other considerations.

TOPAZ screen savers can be confined to a window. Here is an interesting example of that:

uses dbf4, browse4, tzsaver;

begin
 Set_SSWindow_To(1,1,40,25,SingleLine,'Confetti Here');
 Set_ScreenSaver_On;
 Set_BrowseWindow_To(41,1,80,25,SingleLine,'Data Here');
 USE('mydata', NIL, 0);
 BROWSE('');
end.

Here, confetti is falling in a boxed window on the left hand side of the screen, and an active BROWSE
session is taking place on the right hand side of the screen! Try it.

Once you tire of confetti, you will want other "shows". The TZSAVER unit has two other shows--
"Rockets" and "Spiders"--which you can set with the Set_SSType_To routine. Depending on window sizes and
the exact details of your program, here is how much time each "show" takes up:

Confetti : 4% - 15%
Rockets : <1% - 4%
Spiders : <1% - 4%

 126 TOPAZ Tutorial

STACK AND HEAP SPACE

All TOPAZ units have been compiled with range checking turned off which should not present a
problem. Stack checking, on the other hand, has been left on so that stack overflows will not occur without
notification by the Pascal Runtime Library. It is possible to use most of the default stack space with large numbers
of local vars and/or large data structures local to procedures or functions, and this may result in a stack overflow
during the execution of your program.

Without stack checking, a stack overflow may manifest itself with a crash or unexpected behavior. With
stack checking on {$S+}, the program will terminate with a run-time error #202 (Stack Overflow) and will
indicate the address where the error occurred. Regardless of where the error actually occurred, even if it is in
one of the TOPAZ units, the solution to the problem is to allocate more memory for the stack at compile time.

Turbo Pascal's default amount of stack is 16K (16374 bytes). You can adjust the stack size in the Turbo
Pascal editor by selecting the OPTIONS/ COMPILER/ MEMORY-SIZE menu and specifying a larger stack size,
or by including the "M" compiler directive in your main program or on the TPC command line. Typically raising
the stack size to 20,000 bytes from 16K is sufficient:

 {$M 20000, 0, 655360}
 ^ ^ ^---maximum heap requested
 ^ ^---minimum heap required
 ^---stack space specification

Some of the TOPAZ routines allocate space from the heap for data storage. This means that except for
the TIMEDATE unit, you should never specify a zero heap for programs that use TOPAZ units. The following
chart lists the heap requirements of those TOPAZ routines that use the heap:

 TOPAZ Tutorial 127

UNIT ROUTINE HEAP SPACE REQUIRED RECOVERED BY
-------- ---------- ----------------------------- --------------
-- --SayGet -----73 bytes per call plus ---
SAYGET4 size of any prompt string ReadGets or

DBF4 OpenDBF of one record when file is

INDEX4 SET_INDEX_ index (plus 30976 bytes per closing the

BROWSE4 16 bytes per field in index is

REPORT4

SPOOLER report

VIDPOP

PICK plus 16 bytes per screen PopMenu

TAG plus 21 bytes per file in on exit

PICTURE size of PICTURE string

PushColors 7 bytes per call

U S E , Size of file header plus size

TO index for cache if sufficient Index

INDEX_ON avilable heap for sorting sorting area

BROWSE database created

ReportForm 1848 bytes per call, plus 393 exit from

FillWindow size of window saved (maximum

PushWindow 12 bytes plus size of window

PushMenu

OpenLibrar PopWindow
y 600 bytes per screen library

PickList 12 bytes plus size of CloseLibrary

PickFile 12 bytes plus size of

TagItems

TagFiles

800 bytes plus keysize per

heap is available or calling

Same as SET_INDEX_TO plus
variable amounts up to all of

keys r e c o v e r e d

bytes per report column, plus BROWSE
768 bytes for each level of
totals (maximum 3 levels) at end of

Size of spool buffer (8k to
64k), default is 8k

of 8000 bytes - VGA

saved DisplayWindow

141 bytes per call

underlying screen area
(calls Vidpop.PushWindow)

underlying screen area
(calls Vidpop.PushWindow)

list

same as PickList

same as PickFiles on exit

ClearGets

ReadGets or
ClearGets

PopColors

closed

CloseDatabases

after

on exit

on exit

 128 TOPAZ Tutorial

 TOPAZ Tutorial 129

OVERLAY COMPATIBILITY

The following TOPAZ units may be overlayed with Turbo Pascal:

BROWSE4 INDEX4 SAYGET4 TZHELP
DBF4 MEMO SCRENGET TZPRINT
DBFEDIT PICK TIMEDATE TZUTILS
DIALOG PRINTCOM TZCALC VFILES
EDIT REPORT4 TZDBFLOW VIDPOP

The following units may not be overlayed:

CLOCK SPOOLER TZCOMMON TZSAVER

For performance reasons, the following units are not recommended in overlays:

DBF4 SAYGET4 VFILES
INDEX4 TZDBFLOW VIDPOP

The STRUTILS unit is for use with Windows only and therefore not included in this list.

Some of the TOPAZ units have initialization code, so in order for them to be overlayed you must make
sure that the overlay manager's initialization code is called before the initialization code in any of the units in your
program. To do this create a unit, the sole purpose of which is to cause the overlay initialization. It must call
OVERLAY.OvrInit in its initialization section.

unit InitOvr;
interface
uses Overlay;
implementation
{ no code required in implementation }
begin
 OvrInit('MYPROG.OVR'); { use your program name plus .OVR }
 ...
 { error handling here, see Turbo Pascal manual for error checking }
 ...
end.

Make sure to list this unit second (after Overlay) in your program's USES statement, e.g.,

program MYPROG;
uses Overlay, InitOvr, Crt, SayGet4, Timedate;
{$O SAYGET4}
{$O TIMEDATE}
...

 130 TOPAZ Tutorial

Multi-user programs that utilize overlay files should change the mode with which the overlay file is
opened to $40 (sharable read-only). This is done by changing the Turbo Pascal variable OvrFileMode before
calling OvrInit:

 OvrFileMode := $40;
 OvrInit('MYPROG.OVR');

Improved performance can be obtained from the overlay manager if the OvrSetRetry procedure
(available with Turbo Pascal versions 5.5 and higher) is called after the overlay file has been opened. Typical
programs do well with the following value:

OvrSetRetry(OvrGetBuf DIV 3);

Only empirical testing will determine the optimum value. Please refer to your compiler documentation
for more information.

See INITOVR.PAS in the SAMPLES.ZIP file for a ready-to-use overlay initialization unit.

 TOPAZ Tutorial 131

INTERMEDIATE LEVEL ACCESS
TO dBASE FILES

Some applications will require that you perform operations on database fields and even though you may
know the structure of the database, the identity of the specific field to be processed may not be known at compile
time. For example, you plan to prompt the user for a field name to list and the user specifies "LASTNAME".
Although you could write code to identify which field in the user record corresponds to this, TOPAZ provides
a set of eight "intermediate level" functions that can reduce the amount of code you need to write. These functions
may be used with files opened without a UserRec(Buffer) and whose structure is not known at compile time. All
these functions refer to an open and selected database:

Field(n) Returns the name of the nth field in a dBASE file.

FieldAddress(n) Returns a pointer to the location of the first byte of data in the users work
area for the nth field.

FieldCount Returns the total number of fields in each record of the dBASE file.

FieldLen(n) Returns the field length of the nth field. For numeric fields this value

represents the full width of the number including the decimal point and
decimal places.

FieldDec(n) Returns the number of decimals specified for the nth field. Only numeric
fields can have values other than zero.

FieldNo(FieldName) Returns the database field number for the specified FieldName.

FieldType(n) Returns the field type for the nth field.

SField(n) Returns data in the nth field as a format-ted string regardless of actual data
type.

 132 TOPAZ Tutorial

Example of how to display the structure of the current database:

for i := 1 to FieldCount do
 begin
 writeln('Field name: ', Field(i));
 writeln('Field type: ', FieldType(i));
 writeln('Field length: ', FieldLen(i));
 writeln('Field decimals: ', FieldDec(i));
 writeln('Sample contents: ', Sfield(i));
 end;

The following is an example of how to directly access fields in the "userrec" buffer without knowing
the Pascal field name (assumes you have already determined the data type):

{ sum the values contained in the field called TOTAL }
GoTop;
GrandTotal := 0;
while not dEOF do
 begin
 GrandTotal := GrandTotal + LongInt(FieldAddress(FieldNo('TOTAL'))^);
 Skip(1);
 end;

Here's an example showing how to use the intermediate level routines to make and use an index on a
field chosen at run time:

uses dbf4,index4,pick,timedate;
var
W : integer; { should be integer or longint for use with picklists!}
KeyMakerPtr : Pointer;

function GetIndexField(var n : integer) : String; Far;
begin
 GetIndexField := Field(n);
end;

function CNKeyMaker : String; far;
begin
 CNKeyMaker := SField(W);
end;

function DKeyMaker : String; far;
begin
 DKeyMaker := AnsiDate(SField(W));
end;

(continued on the next page...)

 TOPAZ Tutorial 133

begin
 use('test',nil,0);
 w := PickList(@GetIndexField,1,FieldCount,1);
 if w > 0 then
 begin
 case FieldType(w) of

'M',
'L' : begin
 Writeln('Logical and Memo fields cannot be indexed');
 halt;
 end;
'C',
'N' : KeyMakerPtr := @CNKeyMaker;
'D' : KeyMakerPtr := @DKeyMaker;

 end;

 MakeIndex(KeyMakerPtr, 'TEST');
 Set_Index_To(KeyMakerPtr, 'TEST',1);

{ Index_On could be used here, but we recommend using MakeIndex and
Set_Index_To for applications which may have multiple indexes }

 List('');
 end;
end.

Please refer to the Technical Reference section for additional details and examples.

 134 TOPAZ Tutorial

 TOPAZ Multi-User Programming 135

M U L T I - U S E R P R O G R A M M I N G

 136 TOPAZ Multi-User Programming

 TOPAZ Multi-User Programming 137

WRITING MULTI-USER PROGRAMS-
OVERVIEW

PC based networks are more and more common in businesses all over the world and consequently there
is more and more demand for multi-user software to take advantage of those networks. While not all network
operating systems are alike, fortunately it is possible to write programs which will work on the majority of PC
networks. There are two basic functions that a network must provide in order to support multi-user software:

 1. Shareable files. Any number of work-stations must be able to open the same files at the same time.

 2. File locking services. Both file and record level locks must be supported.

Unlike single-user systems (whether their data resides on a local disk or on a network disk), multi-user
programs must expect that other users will be reading and writing at any time to the files that they opened. This
fact must be kept in mind when multi-user systems are designed. Shared data is volatile and fewer assumptions
may be made regarding the contents of a data file. For instance when generating reports from a database, a report
can be out of date before it is even finished printing because, unless steps are taken to prevent it, other people
working at other computers can modify the data for a record right after it is printed in the report.

As you might imagine there are many ways to implement multi-user programs. Some database managers
provide fully-automatic lock management where single-user programs become multi-user simply by being run
under the manager, and there are systems that require the programmer to attend to every detail of multi-user
interaction. TOPAZ falls somewhere in between. By supporting standard DOS locking calls, TOPAZ provides
network OS independent file and record locking at the database level, controllable by the programmer. At lower
and higher levels such as for index updates (low level) and when browsing a file (high level) TOPAZ handles
locking transparently. Another important distinction between TOPAZ and many other multi-user systems,
TOPAZ allows any user to read files and records even when someone else has them locked. In TOPAZ locking
a file simply means that only the owner of the lock may modify the file, it never means that reading data is
restricted. This is an important point since with some systems (dBASE for instance) if a record is locked it will
not show up in a report being generated at the same time by another user.

NETWORKS SUPPORTED

 138 TOPAZ Multi-User Programming

Just about any network which supports DOS 3.x locking calls can be used for programs written with
TOPAZ. It is virtually impossible to test TOPAZ with all the available networks but if yours supports or
emulates SHARE.EXE (from Microsoft), or is known to support DOS multi-user programs (such as the
NOVELL and 3COM networks), your TOPAZ multi-user program should work just fine.

 1. SHARE.EXE BASED NETWORKS
a. MS-NET
b. Lantastic
c. Invisible Network
d. DCA 10-Net
e. CBIS Network OS
... many others

 2. NOVELL NETWORKS
a. ELS
b. 286-NetWare
c. 386-NetWare

 3. 3COM NETWORKS
a. 3-Share
b. 3-Plus

 TOPAZ Multi-User Programming 139

MULTI-USER COMMANDS
Locking Files and Records

Locking a file is necessary before executing any operations which will affect the entire file such as APPEND or,
for certain applications, generating reports. File locking is not sufficient for INDEX_ON, MAKEINDEX,
REINDEX, PACK, or ZAP which all require that the database file be open EXCLUSIVE.

FLOCK - File Lock
This function attempts to lock the currently selected file and if successful, returns True -- otherwise it
returns FALSE. If any other user has any kind of lock in effect on that file, then FLOCK will return
false. With FLOCKs no one else may do a REPLACE or APPEND on that file until the lock is released.

ALOCK - Append Lock
For most applications it is sufficient to use append locks instead of file locks. This function returns false
if the file is currently locked by another user with an FLOCK or another ALOCK. The nice thing about
ALOCK is that other users may have records locked for editing and your program can still append
records safely. With ALOCKs no one else may append records to the file. The owner of the ALOCK
may not do a REPLACE since no actual record is locked. Any number of records may be appended
while an ALOCK is active.

RLOCK - Record lock
Record locks are required any time a record is REPLACEd. This function attempts to lock the current
record in the currently selected database. If it is successful it returns True, otherwise it returns False.
RLOCK will return false only if another user has the same record already locked or if there is an
FLOCK currently in effect. DeleteRec and RecallRec require RLOCKs.

Releasing Locks

After locking a record or file and executing the desired operations the UNLOCK procedure should be called to
release any of the above locks. It is not an error to call UNLOCK when no locks are active.

Locking Retries

By default, FLOCK, ALOCK, and RLOCK will try three times if they are not initially successful. There are two
levels of retries both of which can be set by the programmer. DOS has a built in retry counter and delay between
retries. The default count is three and the delay is one millisecond between tries. If a lock is unsuccessful after
the three tries then the attempt fails. While it is not necessary for most programs, you can change the defaults
by calling Set_DosRetry_To and set the values to either higher or lower values. A similar but higher level retry
system is provided by TOPAZ: Set_Retry_To. This controls how many times the TOPAZ lock command is
retried and in effect is a multiplier for the DOS retry system (see also page 583). If you call Set_Retry_To(10,20)

 140 TOPAZ Multi-User Programming

then TOPAZ will not give up until 30 attempts (10 times the DOS retry count) have been made. Of course if the
lock is successful before reaching any of the retry limits then no additional attempts are made.

 TOPAZ Multi-User Programming 141

PROGRAMMING METHODS AND
TECHNIQUES

Every programmer will probably develop their own philosophy on how multi-user programs should be
written, but to get you started here are two methods which address the primary dilemma in multi-user
programming which is how to provide a safe environment for data without inconveniencing the user. In the
"Simple Record Lock" section that follows, two methods are demonstrated:

 1. The record is locked for the entire time the user is editing the record. This insures that no one else can
attempt to modify the record while the user is editing it on their screen. This method prevents the
situation where two people modify a record at the same time, the last one to save wins. The primary
problem with this method is susceptibility to what we call "the coffee break syndrome" where a user
locks a record for editing and then goes away from their station without unlocking it. This condition can
potentially stop every other user of the application because no one can edit that record and worse still,
if FLOCKs are used for appending, no one can append a new record to the file until the lock has been
released.

 2. The second simple example avoids the "coffee break syndrome" but is not particularly safe. The user
is allowed to edit the record without first locking it. When the user finishes editing, the record is then
locked and replaced. The potential problem with this method is that two or more users may attempt to
modify the same record at the same time. When that happens, the last one to save their changes "wins"
(only the last change saved will be in the record).

In the "Advanced Record Locks" section, a third method is discussed. This method solves the "coffee
break syndrome" by never locking a record (or file) for more time than it takes to write the new data out to disk.
It attempts to deal with the "last-one-to-save-wins" problem by detecting when another user has managed to
modify the same record before the current user saves their changes. To do this properly typically takes more
programming. The way that the example protects against the "last-one-wins" situation is to abandon the tardy
user's changes. It does not guarantee that a user's changes will be accepted. The user must re-enter their changes
when a conflict is detected.

Simple Record Locks

The following section of code demonstrates the simplest method of locking a record so the user can modify one
or more fields in the record. In this example the record is locked for the duration of the edit process. This method
is susceptible to the "coffee break syndrome".

var Data : Data_Record;
begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 {...Select a record to edit...}
 Repeat Until RLock;
 {...Edit/modify the record in memory...}

 142 TOPAZ Multi-User Programming

 REPLACE;
 UNLOCK;
end.

In the next example the record is locked only while the Replace command is being used to write the data
back to disk. This method is susceptible to the "last one to save wins" problem.

var Data : Data_Record;

begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 {...Select a record to edit...}
 {...Edit/modify the record in memory...}
 repeat until RLOCK;
 REPLACE;
 UNLOCK;
end.

Advanced Record Locks

The simple methods shown above are useful for "quick and dirty" programs that must be multi-user. In a more
sophisticated program it is wise to add some error detection and additional logic to avoid or otherwise handle
"deadlocks" (see DEADLOCKS below).

The following example code demonstrates a method which again avoids the "coffee break syndrome"
and protects against someone inadvertently writing over new data input by someone else. If the record cannot be
locked for whatever reason, the user has the opportunity to abandon the edit and try again. Typically in these
situations the program will refresh the screen so that the user can see the new data input by someone else before
attempting to edit the record again.

var Data, Original, Temp : Data_Record;
begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 Go(SelectedRecord); {...Select a record to edit...}
 Original := Data; { make a copy of the record as it is on disk }
 Temp := Data; { make another copy to edit }
 {...Edit Temp record in memory...}
 {...edit is done, now try to lock the record...}
 RetryCount := 0;
 repeat
 Success := RLock;
 if not Success then

begin
 Inc(RetryCount);
 if RetryCount > 10 then
 if DialogBox('Cannot lock record. Keep trying? [Y/n]',
 'YN'#13) = 'N' then Exit { abandon edit }
 else
 RetryCount := 0; { keep trying }
end;

 until Success;

 TOPAZ Multi-User Programming 143

 { record is now locked so read record from disk into DATA for compare}
 SKIP(0);
 {...Compare the contents of DATA vs. Original...}
 if Not Different(Data,Original,Sizeof(Data)) then
 begin
 Data := Temp; {move edited record into buffer prior to replace }
 REPLACE; { write edited record to disk }
 UNLOCK; { always unlock in either case }
 end;
 else
 begin
 UNLOCK; { always unlock in either case }
 c := DialogBox('Another user changed this record '+

 'before you! Press any key to continue...','');
 end;
 end.

Appending Records

Appending records is a special case. Both the new record and the new header information (record count) must
be written to disk. In some respects, appending records is easier than replacing since it is impossible for two
people to append the same record number. Thus no advance checking must be done before an append. Here is
a simple piece of code that appends records to a file:

var Data : Data_Record;
begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 {...create a new record in memory...}
 repeat until ALOCK;
 APPEND;
 UNLOCK;
end.

In databases which must not have duplicate keys, all you have to do is call the KeyMaker function and
attempt to FIND the string returned by the key maker. If Found = True then you may not append that record.
Each index that must have unique keys should be tested.

var Data : Data_Record;
 Done : Boolean;
function KeyMaker : String;
begin
 KeyMaker := Data._INVOICE_NO;
end;

begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 SET_INDEX_TO(@KeyMaker,'DATA.IND',1);
 Done := False;
 repeat
 {...create a new record in memory...}
 repeat until ALOCK; {lock first so no one else appends your key

between the FIND and the APPEND }
 FIND(KeyMaker);
 if not Found then

 144 TOPAZ Multi-User Programming

 begin
 APPEND;
 UNLOCK;
 Done := True;
 end
 else
 begin
 UNLOCK;
 Done := DialogBox('Duplicate invoice numbers not'+ 'allowed.'+

'Try again? [Y/n]','YN'#13')= 'N';
 end;
 until Done;
end.

Another method to insure unique keys is to wait until you are about to append the record, lock the file,
go bottom and increment the contents of the key field to generate the next transaction number. This method
assumes that the INVOICE_NO field will not be modified anywhere else in the program.

var Data,Temp : Data_Record;
 Done : Boolean;
function KeyMaker : String;
begin
 KeyMaker := Data._INVOICE_NO;
end;

begin
 USE('DATA.DBF', @Data, SizeOf(Data));
 SET_INDEX_TO(@KeyMaker,'DATA.IND',1);
 {...create a new record in the var TEMP...}

 { continued on the next page...}

 TOPAZ Multi-User Programming 145

 { lock the file }
 repeat until ALOCK;
 { generate a new invoice number }
 GoBottom; { or Go(RecCount) }
 Temp._INVOICE_NO := SInteger(IntegerVal(Data._INVOICE_NO)+1,0);
 Data := Temp;
 APPEND;
 UNLOCK;
end.

Indexing, PACKing and ZAPping Files

Global file operations such as creating an index, packing, or zapping require that the database be opened
EXCLUSIVE so that no other program has the file open. This is achieved by adding the EXCLUSIVE clause
to the filename in the USE command. After the operation is complete the file can be re-opened normally
(sharable) allowing other programs to open the file. All three operations have the awkward problem that it is
impossible to open a file exclusive if another user has the file already open in any mode. Other than detecting
that another user has a file open there are no special techniques to handle that problem.

Here is how to set things up to index, PACK, or ZAP a file:

procedure MyZap;

begin
 SET_AUTOHALT_OFF;
 USE('DATA.DBF EXCLUSIVE', @Data, SizeOf(Data));
 SET_AUTOHALT_ON;
 if DbfError <> 0 then
 begin
 if DbfError = 5 then
 Writeln('File in use by another. Cannot open exclusive')
 else
 TZCOMMON.ONERRORHALT; { call the error report routine }
 end
 else
 begin
 {... create an index, pack, or zap the file here ...}
 ZAP;
 end;

 { re-open the file sharable in any case }
 { Note: the file does not have to be explicitly closed first }
 USE('DATA.DBF', @Data, Sizeof(Data));
end;

Since packing a database is awkward in multi-user systems, there is a way you can avoid packing
altogether. This is done by re-using deleted records. All the programs that access a file must agree that when a
record is deleted it is considered to be available for re-use. When a new record is to be added to the file, a deleted
record is located, updated, and replaced in the database. Only if no deleted records are available will the file be
expanded with an APPEND. To use this method you need to hide deleted records from view until they are
re-used. This "hiding" can be done by calling the global setting SET_DELETED_ON, or for a specific file by

 146 TOPAZ Multi-User Programming

having a filter which excludes records marked for deletion. This method eliminates the need to pack a file but
it does require the added overhead of trying to locate deleted records each time a new record is to be appended.

Reporting in a Multi-User system

Normally reports require no special treatment in TOPAZ multi-user systems, no locking is required nor will
locking the file or any records by other users affect your ability to generate reports. In certain situations however
you may want to restrict changes to the database while generating the report. Just lock the file (with an FLOCK)
while printing your report and unlock it when finished. This will guarantee that no new records are added and
that none of the data in the report changes before the report is complete. Remember though that other users may
be inconvenienced if they are prevented from adding and editing for extended periods of time while your report
is printed. One way to reduce the time to generate reports is to send them to a text file instead of the printer and
then print from that file. Remember to use unique filenames for such temporary files.

Browsing in a Multi-User system

The BROWSE procedure provides basic editing and appending functions for you. BROWSE handles the
appropriate file and record locks. Packing via the function key <F4> is disabled in BROWSE unless the file is open
EXCLUSIVE. If you use a BrowseCalc routine to handle adding and/or editing records, your BrowseCalc
procedure will have to handle the appropriate locking for those situations.

 TOPAZ Multi-User Programming 147

EDIT and EditRecord Routines in a Multi-User system

The EDIT procedure will automatically lock and unlock records that are being edited. However, the programmer
must lock and unlock any record being edited with EditRecord.

Memo Files in a Multi-User system

To insure that there are no conflicts when modifying memo fields it is recommended that the record be locked
while editing or creating a memo. TOPAZ will handle the locking and unlocking of the actual memo file, but the
programmer should lock the associated record in the database during the memo editing session.

Temporary Files

Multi-user programs have a problem when it comes to creating and using temporary files. In a single-user system
you can generally use any reasonably unlikely filename such as $TEMP$.$$$ when you need to create a
temporary work file. Programs which are run on shared disks and multi-user programs must be developed more
carefully. A single program running on multiple work stations must not assume that it is the only version of itself
running. It must find a way to create truly unique filenames for temporary files. Only then can the same program
can be run on any number of computers and not encounter any conflicts with itself. DOS 3.x provides a
mechanism to generate unique filenames and TOPAZ provides high-level access to that method. The function
UniqueFilename returns a filename which should be used as soon as it is obtained.

Deadlocks

Deadlocks are conditions where two or more work-stations are waiting for each other to release locks so that their
individual processes can proceed. These conditions, if not dealt with, can cause two work-stations to wait
forever. Normally it is sufficient to retry locks until a programmer defined timeout has occurred and then either
abandon the edit or allow the user to specify whether to continue retrying or not. In more advanced applications
it may be necessary to build in logic to detect deadlocks and still further logic to back out of the process in an
orderly manner.

Database Safety Issues

Some applications handle data that is difficult or even impossible to regenerate or reconstruct should it be lost.
One such application would be a data collection program that monitors a device and logs the captured data to
disk. Without special file handling a power failure or a crash can cause the loss of all the data appended to a file
since the file was last opened. The reason for this is that normally the directory information for a file is updated
with the correct file size only when the file is closed. If a program expands a file and power is lost before the file

 148 TOPAZ Multi-User Programming

is closed, the directory will still show the file size as it was before it was expanded. Attempting to access the
records that were "lost" will result in a disk-read error.

TOPAZ provides several ways to reduce the risk of data loss. The methods differ slightly depending
on where the disk file or files which are at risk are located.

 1. For files which reside on non-network (local) drives it is sufficient to either call Set_Flush_On for
continuous protection, or FlushDBF after appending a single record or a group of records. This method
is relatively fast since the file does not have to be closed in order to update the directory. If the file is
not open EXCLUSIVE then it must be locked with either an ALOCK or FLOCK before calling
FlushDBF.

 2. For files which reside on network (remote) drives it is slightly more complicated. Some networks such
as the CBIS Network OS and other SHARE based networks, fully support the methods described above
and thus nothing more need be done. On the other hand, with networks such as Novell's Netware, 3-
Com networks, and possibly others, the directory update cannot be achieved without actually closing
the file. To handle this situation, the procedure called CommitDBF will close and re-open the currently
selected database simply for the purpose of updating the directory. It can and should be used in
conjunction with either Set_Flush_On or FlushDBF after appending records.

File Attribute Issues

Some networks (such as NOVELL NETWARE) support additional file attributes to flag specific files as sharable
or non-sharable. TOPAZ will allow concurrent use of files with either attribute. It is not necessary to flag files
as sharable to operate multi-user TOPAZ programs. It is important however that you determine if a file resides
on a remote drive (network) versus a local drive. DOS will not allow you to open a file as sharable if it resides
on a local drive. You can easily determine if a file is on a remote drive by calling the DriveIsRemote function
provided in the DBF4 unit. The mode in which a file is opened is controlled by the SYSTEM.FileMode variable.
TOPAZ will automatically set the proper FileMode value according to whether the file is being opened
exclusively or shared. If you want to open a file exclusive either because it resides on a local drive or because
you want to have exclusive use of the file for packing and/or re-indexing you must add the clause EXCLUSIVE
to the filename when calling USE to open the file. It is also possible to SET_EXCLUSIVE_ON so that all files
are opened exclusive until SET_EXCLUSIVE_OFF is called. The following table shows the values of FileMode
that TOPAZ uses:

FileMode Value Conditions

$12 EXCLUSIVE (deny all) <- Multi-User units
$42 Non-exclusive (deny none) <- Multi-User units
$02 EXCLUSIVE <- Single-User units

 TOPAZ Multi-User Programming 149

SINGLE-USER VS. MULTI-USER SOURCE
CODE

The single-user units have stubs for all of the multi-user routines so you can compile your multi-user
source code with the single-user units. On the other hand, by setting TZCOMMON.MULTIUSER := FALSE,
you can disable the locking calls so that a program compiled with the multi-user units can be run on a single user
machine or in single-user mode on a network.

If you need to insure that your program is compiled with either set of units there are two identifiers found
in the TZCOMMON unit that are unique to their respective versions:

MultiUserVersion = True; { available only in the multi-user version}
SingleUserVersion = True; { available only in the single-user version}

By referencing one of these constants in your code the compiler will complain with an: Error #3:
"Unknown identifier" if you attempt to link the wrong version of TOPAZ.

Program Overlay Files: Please refer to your Turbo Pascal Reference manual for information about setting
the overlay file mode for multi-user programs. See also page 130 in this manual.

Sample Programs: The sample program MEMODEMO.PAS was written to demonstrate the use of memo
fields as well as multi-user database access. BROWSE.PAS also has examples of the use of some of the multi-
user commands and methods. Another source of sample multi-user programs are the MakePas templates:
NETPROG.TEM and NETUNIT.TEM. These templates will generate multi-user programs and units for your
databases to be used for demonstration purposes. The generated programs as well as the templates themselves
can be modified to suit your applications and programming style.

NOTE: The TOPAZ network version units should be kept separate from the normal single-user units
since they have the same names but are not compatible with the single-user units. If you attempt to use
mismatched units the compiler will complain with error #70: "Unit version mismatch".

 150 TOPAZ Multi-User Programming

ADDITIONAL NOTES FOR NOVELL
NETWORKS

The following information applies to both single-user and multi-user applications regardless of which
TOPAZ units are used to compile a program.

Maximum File Handles: On Novell Networks (versions 2.1 and above) the default maximum number of file
handles available for a work-station is 40 unless a SHELL.CFG file exists on that work-station with the following
line:

FILE HANDLES = <n>

If you use the EXTEND unit in your programs to allow your program to open more than the DOS
default of 20 handles, you may need to create a SHELL.CFG file in order for your program to open more than
40 files on a network drive. The number of files open on a local drive is not affected by the settings in the
SHELL.CFG file. The SHELL.CFG file must be in the current directory when you invoke NET3.COM. For more
information see the NetWare Supervisor Reference, Appendix B: Shell Configuration File Options.

Here is an example: To enable opening up to 90 files on a network drive by a specific work-station,
create a file called SHELL.CFG in the same drive and directory where NET2.COM or NET3.COM are found,
with the following line:

FILE HANDLES = 90

NOTE: The use of Novell's NET2.COM work-station driver (used with DOS version 2.x) will not allow
multi-user access of databases by TOPAZ programs. All work-stations running TOPAZ multi-user programs
must also be running DOS version 3.1 or higher.

Local File Cache Buffers: It is recommended that all shared files utilized by TOPAZ multi-user programs be
flagged as Sharable due to the fact that the network shell on one or more work-stations may be configured to
locally buffer non-shared files.

Changing the Novell file attributes to Sharable/Read-Write is done with the Novell utility FLAG.EXE.
For example:

FLAG *.DBF /SRW FLAG *.DBT /SRW FLAG *.IND /SRW

 TOPAZ Multi-User Programming 151

THE TOPAZ SPOOLER
AND NETWORK PRINTING

The routines used by the SPOOLER unit access the printer port hardware directly, taking over BIOS
Interrupt 17h. This means that if a work-station is running network software and it has specified that printer
output should be re-directed to a network printer, the TOPAZ spooler will not be able to send data to the network
printer. On the other hand, if there is a printer physically connected to the work-station printer port, the TOPAZ
spooler will print to it regardless of whether the user has requested re-direction to a network printer. Thus if you
want the print output of your program to go to a network printer you must not enable the TOPAZ print spooler.
Note that the TOPAZ spooler is enabled by default if it has been linked into a program by having it in a USES
statement.

If print output has been redirected to a network printer, the output of the TOPAZ spooler will still be
sent to a local printer if any. If there is no local printer then the spooler buffer will still have characters waiting
to be printed when your program terminates and the user will be informed that printing has not been completed.
If this occurs there is no way to recover the print data in the buffer (other than connecting a printer to the
computer) and the user must press <Esc> to return to the DOS prompt.

Due to the fact that the various network operating systems handle network print spooling differently,
knowing that network software is running on a work-station (by calling function NetworkFound for instance, if
you have the multi-user units) is not necessarily sufficient to determine whether print output is being re-directed.
Before utilizing the TOPAZ spooler you must either query the user about the use of a local printer or when in
doubt disable the TOPAZ spooler.

 152 TOPAZ Multi-User Programming

TOPAZ INTERNAL METHODS

Logical Locks

TOPAZ uses logical rather than physical locks on records and files. This means that nothing in the file itself is
actually locked. With this method the areas that are locked are offset from the actual file by over a billion bytes,
well past the size of any real-world file. This means that you can "lock" a record or file and everyone else may
read it without encountering any physical locks. (Note: The method and offsets are identical to the those used
on DBF files by the multi-user FoxBase product: MFoxPlus).

Only one lock of any type is allowed per file per work-station. This means that you may not lock two
records at the same time in the same file nor may you have both a record lock and a file lock active on the same
file.

IMPORTANT: It is assumed that ALL programs that use TOPAZ databases and indexes will observe the same
locking convention. The multi-user dBASE, DBA, uses physical record locks which means that while the
programs will appear to co-exist and can access files at the same time, they will not recognize each other's record
locks and data corruption can possibly occur.

NOTE: Virtual files (discussed in the "Virtual Files and Linked Lists" section in this manual) can never be
multi-user since they always reside in memory on a work-station and no other process has access to them. Virtual
files are always opened exclusive so that no attempts to lock them will be made. If you create any indexes on
virtual files be sure that they have unique filenames so that other work-stations will not attempt to open or
overwrite them.

Memo Files

When memo files are updated, TOPAZ physically locks the tenth byte in the header section of the file briefly, so
that the block count can be updated.

Semaphore Files

For each database that has indexes open the INDEX4 unit will open or create a companion "semaphore" file
which will help manage the multi-user access to the index files for that database. The file will be called
<database>.@S@ These files are created by the first application to open the database with indexes and are
deleted by the last application to close the database. If your program crashes and leaves these files on disk you
should delete them before running the application again. The purpose of the semaphore file is to prevent an
application from updating an index when another application is currently traversing one of the index trees (for

 TOPAZ Multi-User Programming 153

a FIND or SKIP or other "read" operation on the index). If a database is opened EXCLUSIVE a semaphore file
will not be opened or created for any indexes on that database.

Semaphore files themselves are subject to momentary locking. Multiple users in effect compete for
access to these files. If a semaphore file cannot be locked within a timeout period, something has gone wrong.
Version 3.0 of TOPAZ set this timeout period to 182 timer ticks (about 10 seconds). Since version 3.5, this
period is specified by a global word in the INDEX4 unit called SemaphoreTimeOut, set to timeout in timer ticks
(remember that there are 18.2 ticks/second). It is initialized to 182.

File Handles

Because of the semaphore files, the network version of TOPAZ typically requires the use of more file handles
than the same program in single-user mode. The FILES=<n> setting in your CONFIG.SYS file should be at least
FILES=20. If your application still needs more file handles it is recommended that you use the public-domain
EXTEND.PAS unit provided in the EXTEND7.ZIP file on the TOPAZ distribution disk(s) to allow the use of
more than the normal DOS limit of 15 open files. Please refer to EXTEND.DOC for information about using
EXTEND.PAS and the appropriate CONFIG.SYS settings when using EXTEND.PAS.

 154 TOPAZ Multi-User Programming

Sharable File Attributes

On some networks including NOVELL NETWARE, all files that will be opened concurrently by multiple
applications should have the Sharable/Read-Write attribute. For TOPAZ programs this usually means that the
DBF and IND files should be sharable. On NOVELL systems this can easily be done with the FLAG command
from the DOS prompt:

D> FLAG *.DBF /SRW
D> FLAG *.IND /SRW

You can also use the SetFAttr procedure provided in Turbo Pascal to set the file attribute to sharable:

procedure SetSharableBit(Filename:string);
var
 attr : word;
 f : file;
 error : boolean;
begin
 Assign(f,Filename);
 GetFAttr(f,attr);
 Attr := Attr or $80;
 SetFAttr(f,Attr); { fails if file is already open or open by another

user }
 Error := DOSError <> 0; { possible errors are #3 and #5 }
end;

The DBF4 unit's exit procedure will unlock any currently locked database records or files when your
program terminates. This is a safety feature. However, the programmer should always unlock records in their
applications. The exit procedure will also restore the default DOS retry values in case they were changed since
these values affect all programs running on a work-station.

NOTE: All TOPAZ multi-user routines by default expect that a network is present and that the files accessed
are on the network server. It is up to the programmer to insure that a network is actually present. This can be
done by calling the NetworkFound function which will detect most networks.

 TOPAZ Multi-User Programming 155

Performance Issues

Multi-user programs typically run slower than single-user programs for several reasons. First of all there is the
overhead of the network operating system, data transmission times between the server and each work-station,
and the fact that everyone is accessing a single disk. Secondly, additional overhead is built into certain TOPAZ
functions such as RecCount and dEOF which must read the record count information in the file header each time
they are called to be sure to return up-to-date information. Thirdly, with indexed files there is the overhead of
managing the semaphore files. Last but not necessarily least, it takes a measurable amount of time to execute lock
and unlock commands. The number of work-stations that are actively reading and modifying shared files will
also affect performance, although the degree of performance loss has much to do with the network operating
system and the speed of the shared disk.

 156 TOPAZ Database Engine for Windows

 TOPAZ Database Engine for Windows 157

D A T A B A S E E N G I N E
F O R W I N D O W S

 158 TOPAZ Database Engine for Windows

 TOPAZ Database Engine for Windows 159

TOPAZ DATABASE ENGINE FOR WINDOWS

The TOPAZ Database Engine for Windows is a sub-set of the DOS version and is intended to be used
with Borland Pascal or Turbo Pascal for Windows. Except for those routines and methods specifically covered
in this documentation, all other supported TOPAZ functions and procedures work identically with those under
DOS. This means that you can use the usual TOPAZ documentation for usage information about most of the
available routines.

While the demonstration program, TZWDEMO.PAS, uses Borland's Object Windows Library (OWL),
TOPAZ does not dictate that you utilize object oriented programming methods nor does it require that you use
OWL when developing applications. TOPAZ does not include any DLL's or resource files so that it is possible
to develop stand-alone applications which do not require any support files at run time.

It is highly recommended that you familiarize yourself with Turbo
Pascal for Windows, and Windows programming in general before incorporating TOPAZ routines in your
applications. Unlike TOPAZ under DOS, only general database access facilities are provided for Windows and
it will be necessary for you to use different methods for providing data entry and other user interface features in
your applications.

The general rule for determining what functionality is supported under Windows versus DOS is that
if it does or is involved in screen I/O then it is not available for Windows. This means that except for the string
manipulation routines from SAYGET4, none of the data entry routines are available. For specific information
regarding available routines please refer to the header files (.HED).

The following units may be compiled for use in TOPAZ under Windows:

TZCOMMON.TPW MEMO.TPW
DBF4.TPW VFILES.TPW
TZDBFLOW TIMEDATE.TPW
INDEX4.TPW STRUTILS.TPW
TZPRINT.TPW

Under Windows, TOPAZ also includes a few additional routines not found in TOPAZ under DOS.
These include a new method for reading and writing memo fields, and a string-parameter interface to the
Windows MessageBox function. Please refer to the demonstration program, TZWDEMO.PAS, for examples
of the use of these routines and for general guidance regarding the usage of TOPAZ in an application.

The following routines from SAYGET4 have been included unchanged in STRUTILS:

function FileExists(FileName : String) : Boolean;
function CountOf(C : Char; var S : String) : Byte;
function PosOf(N : Byte; C : Char; var S : String) : Byte;
function IsAlpha(S : String) : Boolean;

 160 TOPAZ Database Engine for Windows

function IsUpper(S : String) : Boolean;
function IsLower(S : String) : Boolean;
function Replicate(Character : Char; times : Integer) : String;
procedure UpperCase(var S : String);
function Upper(S : String) : String;
function Lower(S : String) : String;
function Ltrim(S : String) : String;
function IntegerVal(Number_Str: String) : Integer;
function Trim(S : String) : String;
function SReal(R : Real; L, D : Byte) : String;
function SInteger(I : LongInt; L : Byte) : String;
function SBoolean(X : Boolean) : Char;
function Space(X : Integer) : String;
function RealVal(Real_Str : String) : Real;
function Longval(Number_Str : String) : LongInt;
function IIF(Expression : Boolean; IfTrue, IfFalse : String) : String;

The following types and constants have been added to TZCOMMON to provide better source code
compatibility between the DOS and Windows versions of the compiler:

type
 PathStr = String[79];
 DirStr = String[67];
 NameStr = String[8];
 ExtStr = String[4];

 Registers = tRegisters;
 SearchRec = tSearchRec;
 FileRec = tFileRec;
 TextRec = tTextRec;

const
 ReadOnly = faReadOnly;
 Archive = faArchive;
 SysFile = faSysFile;
 Hidden = faHidden;

Printing via the Windows Print Manager is a complex topic and is not currently addressed by TOPAZ.
Currently, the TZPRINT unit will access the printer ports directly, bypassing the Windows Print Manager. This
is adequate for simple utility programs but not for applications which are expected to be well-behaved in the
Windows environment.

Take a look at the sample program and support files archived in WINDEMO.ZIP for using TOPAZ
under Windows. The program can be compiled for single or multi-user use. Use it for ideas about how to use
TOPAZ in the Windows environment.

 TOPAZ Technical Reference 161

T E C H N I C A L R E F E R E N C E

 162 TOPAZ Technical Reference

 TOPAZ Technical Reference 163

PROCEDURES AND FUNCTIONS REFERENCE

This chapter of the manual describes all the procedures and functions of the TOPAZ units. These units
are named

BROWSE4 MEMO SPOOLER TZHELP
CLOCK PICK STRUTILS TZPRINT
DBF4 PRINTCOM TIMEDATE TZUTILS
DBFEDIT REPORT4 TZCOMMON TZSAVER
DIALOG SAYGET4 TZCALC VFILES
EDIT SCRENGET TZDBFLOW VIDPOP
INDEX4

For your convenience, routines are arranged alphabetically. In almost all cases procedures and functions
are listed one per page. The name of the procedure or function is at the top of the page together with the word
"procedure" or "function" and the unit the routine belongs to. The actual interface code for all units can be found
in the files with extensions HED archived in the file TOPAZSRC.ZIP on the TOPAZ distribution disk(s).

NOTE: Procedures and functions with Unit names followed by (W), i.e. TZCOMMON (W), can only
be used with the TOPAZ Database Engine for Windows.

Many of the TOPAZ procedures require call-back routines to tailor their performance to suit the needs
of your applications. There are two rules regarding these functions. First, these functions must be declared FAR
by means of the {$F+} and {$F-} compiler directives. Second, these procedures cannot be nested in other
procedures and functions.

Don't forget to look at the README file for corrections and additional documentation. You are also
welcome to take advantage of our Technical Support line, and our Bulletin Board. To connect to our bulletin
board, dial the number listed on the back of this manual at the appropriate baud rate. You will find various files
and threaded messages of interest to TOPAZ application developers.

 164 TOPAZ Technical Reference

__

AbsWhereX function VIDPOP

Purpose: Returns the absolute column position of the cursor regardless if any Pascal windows are
active.

Declaration: AbsWhereX : Byte;

Notes: AbsWhereX will be in the range 1 to 80. See WhereX in the Turbo Pascal manual.

Example: {save current location of cursor}
SaveX := AbsWhereX;
SaveY := AbsWhereY;
.
.
.
{after writing data to the screen restore cursor position}
GoToXY(SaveX,SaveY);

__

AbsWhereY function VIDPOP

Purpose: Returns the absolute row position of the cursor regardless if any Pascal windows are active.

Declaration: AbsWhereY : Byte;

Notes: AbsWhereY will be in the range 1 to VIDPOP.MaxAvailRows. See WhereY in the Turbo
Pascal manual.

Example: See example above.

 TOPAZ Technical Reference 165

__

ActiveMemos function MEMO

Purpose: Returns the fraction of the memo file that contains valid text blocks.

Declaration: ActiveMemos : Real;

Notes: Editing memos will result in blocks of "dead" text. The memo routines do not perform
automatic "garbage collection". These blocks of inactive text data are removed during a call
to PACK as well as PackMemoFile. ActiveMemos can be used to determine how much of the
file is "garbage" data, and whether a call to PackMemoFile is warranted.

WARNING: ActiveMemos will not be reliable after a memo has been edited or added by
dBASE. If this occurs, a call to PackMemoFile will restore the proper operation of
ActiveMemos.

Example 1: SelectAlias('calls');
c := DialogBox(SReal(100 - 100 * ActiveMemos,3,0)

+ ' % of the memo file is wasted space. Pack memos?','yn');
if c = 'Y' then PackMemoFile;

Example 2: SelectAlias('calls');
if ActiveMemos < 0.5 then
 begin
 c := DialogBox('Removing old memos...',StayOn);
 PackMemoFile;
 RemoveDialogBox;
 end;

 166 TOPAZ Technical Reference

__

AddISRVector function TZCOMMON

Purpose: Assigns and returns a byte "handle" to a timer-tick Interrupt Service Routine (ISR) that is used
with several of the TOPAZ ISR management routines.

Declaration: AddISRVector(Vector : Pointer) : Byte;

Parameter: Vector is the address of the ISR procedure.

Notes: TOPAZ supports three forms of ISR routines that chain themselves into the timer-tick
interrupt ($1C): the clock, spooler, and screen saver. As a programmer, you may invoke some
or all of these routines in any order, and disable them in any order. Code in the TZCOMMON
unit exists to act as a "traffic cop" with regard to the assignment and restoration of the timer-
tick interrupt chain vectors. All of this is handled internally and is transparent to you, unless
you wish to add your own timer-tick ISR. In this instance, your routine must first make a call
to AddISRVector to tell TOPAZ it's address, and to store the byte handle that TOPAZ will
assign to it. When your ISR is called, it must pass control to the next ISR in the chain, by
asking TOPAZ for the ISR's address. See ChainISRAddress, RemoveISRVector. See also the
section "Interrupt Service Routines in TOPAZ" in the Tutorial section of this manual.

 TOPAZ Technical Reference 167

__

AddStru procedure VFILES

Purpose: Assigns a dBASE file structure to a virtual file.

Declaration: AddStru(FieldList : FieldArray; FieldCount : Byte);

Parameters: FieldList is an array[1..128] of FieldRecord defining each field in the record. FieldCount is
the number of fields in the record.

Notes: When a virtual file (linked list) is opened in TOPAZ, there is no dBASE structure associated
with the record. TOPAZ allows you to "borrow" the dBASE structure of any open DBF file
via a call to CopyStruFrom. Once this is done, you can use high level routines in TOPAZ,
such as BROWSE, on the virtual file. In many instances, however, it is desired to assign a
structure to the virtual file that is unlike any of the DBFs in the application. In these cases, a
call to AddStru provides the mechanism to completely define the structure.

Example: USE('*mylist* VIRTUAL FILE', @MailList, SizeOf(MailList));
FieldList[1].Name := 'LASTNAME';
FieldList[1].Typ := 'C';
FieldList[1].Len := 20;
.
.
.
FieldList[20].Name := 'ZIPCODE';
FieldList[20].Typ := 'C';
FieldList[20].Len := 5;
AddStru(FieldList, 20);
{the virtual file *mylist* now has a dBASE structure and thus can be
LISTed, BROWSEd, etc.}

 168 TOPAZ Technical Reference

__

AddTarget procedure TZCOMMON

Purpose: Adds a rectangular Mouse target to the current list of Mouse targets.

Declaration: AddTarget(c1,r1,c2,r2, TargetID : Integer;
Mask : Byte)

Parameters: c1,r1 refer to the column and row position of the upper left corner of the target area
being specified. c2,r2 refers to the column and row position of the lower left corner
of the target area. TargetID must be a unique, positive and non-zero integer with
which to identify the target. All negative TargetID values are reserved for TOPAZ
internal use. Mask is a bit-mask which tells TOPAZ which Mouse events this target
should be sensitive to.

Notes: TOPAZ routines (like PickLists, BROWSE, etc.) have automatic Mouse sensitivity.
To add special Mouse sensitive areas in a specific application one must specify one
or more Mouse "targets". AddTarget is used to define target location, ID, and
Mouse button sensitivity. See GetEvent, EnableMouse, and the example below.
See the sample programs for additional examples, such as PHONE.PAS in the
PHONE.ZIP file.

Example: {create two "buttons", wait for a left-button release on one of
them, and act accordingly}
var e : EventRec;
begin
 At(5,5,'OK');
 At(10,5,'Cancel');
 AddTarget(5,5, 7,5, 1, LeftButtonReleased);
 AddTarget(10,5,15,5, 2, LeftButtonReleased);
 EnableMouse;
 GetEvent(e);
 case e.WhichEvent of
 Keyboard :; {not interested in keystrokes here}
 Mouse : case e.TargetID of

 1 : At(1,20,'You pressed OK');
 2 : At(1,20,'You pressed Cancel');

 end;
 end;
 DisableMouse;
end.

 TOPAZ Technical Reference 169

__

AdvanceProgress procedure DIALOG

Purpose: Causes the currently displayed Progress Bar to grow one unit, if it was started with
StartProgress.

Declaration: AdvanceProgress;

Notes: The TOPAZ routines Set_Progress_On/Off allow you to display a smoothly growing Progress
Bar during scans of databases. In these instances, TOPAZ can internally manage refreshing
the bar display in step with the database file. Oftentimes, you will want to take advantage of
Progress Bars during a repetitive operation, but you want more control of the Progress Bar.
In these instances, a call to StartProgress directs TOPAZ to display a Progress Bar.
Subsequent calls to AdvanceProgress then direct TOPAZ to update the screen.
AdvanceProgress should not be used if Set_Progress_On was used to start the Progress Bar.
See StartProgress, PositionProgress, Set_Progress_On/Off, Set_ProgressWindow_To, and
Set_Progress_Color_To.

Example: {do a calculation 100 times, showing a proportional Progress Bar:}
N := 100;
StartProgress(100);
for i:=1 to N do
 begin
 ComplicatedMath;
 AdvanceProgress;
 end;
Set_Progress_Off;
{NOTE: calling AdvanceProgress N times will result in the Progress Bar
completely filling its display.}

 170 TOPAZ Technical Reference

__

AdvanceRotor procedure DBF4

Purpose: Permits the programmer to rotate the TOPAZ I/O indicator one quarter turn.

Declaration: AdvanceRotor;

Notes: With Set_Rotor_On, TOPAZ automatically spins its I/O activity symbol on the monitor during
calls to SKIP, GO, GoTop, GoBottom, FIND, PACK, BROWSE, and ReportForm. Normally,
there is no need to call AdvanceRotor. If, however, the programmer has written code that
performs non-TOPAZ processing on variables in memory (e.g., sorting a large linked list),
AdvanceRotor permits the program to update the rotor at appropriate times. See
Set_Rotor_On/Off, Set_Rotor_To.

Example: Set_Rotor_On;
while DataAvailable do
begin
 GetSerialBlockFromModem;
 ComputeCheckSum;
 AdvanceRotor;
end;

Here, the programmer is getting data from a serial port and doing check sum computations.
Since these are all non-TOPAZ related calls, the programmer "manually" advances the rotor
symbol 90 degrees after each block of data is processed.

 TOPAZ Technical Reference 171

__

After function TZUTILS

Purpose: Returns the portion of a string following a specified string.

Declaration: After(SubStr, S : String) : String;

Parameters: SubStr specifies the string to be searched for. S is the string to examined.

Notes: After returns the empty string if SubStr cannot be found in S. See Between, Before.

Example: s := 'We hold these truths to be self-evident.';
WriteLn(After('truths',s));
{displays " to be self-evident."}

 172 TOPAZ Technical Reference

__

ALIAS function DBF4

Purpose: Returns the ALIAS name of the currently selected database.

Declaration: ALIAS : String10;

Notes: Whenever a database is opened with the USE command, an ALIAS name is assigned. By
default, the ALIAS is the simple name of the file (without drive, path, or extension). The
ALIAS can be specified by means of a clause in the USE procedure, or through Set_Alias_To.
The ALIAS function then permits the programmer to determine which file is open. An
ALIAS is limited to 10 characters in length. Returns the empty string if no file is open in the
current area. See USE, DBF, Set_Alias_To, SelectAlias.

Example: SELECT(4);
USE('invoices', @invoice, SizeOf(invoice));
Set_Alias_To('MayBilling');
.
.
.
SELECT(4);
WriteLn('Data file in use is ', ALIAS);
{Output: "Data file in use is MAYBILLING"}

 TOPAZ Technical Reference 173

__

ALOCK function DBF4/NET

Purpose: Locks a multi-user database file to allow appending records. Acts on the currently selected
open database.

Declaration: ALOCK : Boolean;

Notes: Returns False if it is not possible to lock the file for any reason. The usual reason for returning
False is that the file is already locked by another user with either an ALOCK or FLOCK.
Either ALOCK or FLOCK must be called prior to calling APPEND. ALOCK has an
advantage over FLOCK since ALOCK does not prevent other end-users from editing and
replacing records while the file is ALOCKed. Once locked, the file may be unlocked by
calling UNLOCK, closing the file, or terminating the program. Always call UNLOCK before
attempting to issue another lock of any type. If the global variable TzCommon.MultiUser is
FALSE, then ALOCK will not attempt to lock the file and will return TRUE.

See FLOCK, RLOCK, UNLOCK, Set_Retry_To.

Example: repeat until ALOCK;
APPEND;
UNLOCK;

 174 TOPAZ Technical Reference

__

AM_PM function TIMEDATE

Purpose: Given a 24-hour time variable with format HH:MM:SS, AM_PM returns the time expressed
in am/pm format.

Declaration: AM_PM(T : TimeType) : String;

Parameter: T is a time expressed as HH:MM:SS from 00:00:00 to 24:00:00

Notes: Times from 00:00:01 - 11:59:59 are returned with a suffix of "am". Times from 12:00:01 -
23:59:59 are returned with a suffix of "pm". For the special cases of 12:00:00, 00:00:00 and
24:00:00, this function returns "12:00:00 n." and "12:00:00 m." (meaning "noon" and
"midnight"). AM_PM always returns an 11-byte string.

IMPORTANT: This function does not reformat elapsed time values greater than 24:00:00.

Example: ArrivalTime := '23:45:30';
WriteLn('Due to arrive at ', AM_PM(ArrivalTime));
{outputs: "Due to arrive at 11:45:30 pm"}

 TOPAZ Technical Reference 175

__

AnsiDate function TIMEDATE

Purpose: Returns a date variable in ANSI format (YY.MM.DD).

Declaration: AnsiDate (Date : String10) : String10;

Parameter: Date is a date variable that is assumed to be in the currently selected date format.

Notes: Indexing on a date variable will sort on the ASCII representation of the date. Thus, if the date
format is American, dates will be sort by Month, then day then year. This will result in
'02/01/89' ordered after '01/01/90'. Indexing on the AnsiDate of a date variable will solve this
problem.

AnsiDate assumes that the date parameter is already in the currently selected date format,
which means that it cannot convert a date from German to ANSI if the current date format is
set to American. Dates that are already in ANSI format will be corrupted by this function.

See CTOD.

Example 1: function KeyMaker : String;
begin
 KeyMaker := AnsiDate(MyFile._DATE);
end;

Example 2: if AnsiDate(Date1) < AnsiDate(Date2) then ...

 176 TOPAZ Technical Reference

__

APPEND procedure TZDBFLOW

Purpose: APPEND causes the contents of the current record (as defined in the user record) to be
appended to the current database.

Declaration: APPEND;

Notes: APPEND is NOT an interactive command (as it is in dBASE). APPEND creates a new
record at the end of the file with the contents of the user record in memory. Normally when
adding a new record to the file you clear the contents of the user record, input the new record,
and then call APPEND. To emulate the "Set Carry On" syntax of dBASE (where appended
records contain the same data as the current record in memory) don't clear the user record
before "getting" new data. APPEND automatically updates any open indexes.

The TOPAZ APPEND procedure is NOT a replacement for the Pascal "Append" procedure
(which deals with adding ASCII data to text files). If your program "uses" the DBF4 unit and
if you wish to use the Pascal Append in your code, it can be referenced by:

System.Append (FileVar)

Example: {open a dBASE file}
USE('maillist', @maillist, SizeOf(maillist);
{clear the user record prior to inputting new data}
ClearRecord;
{assign field values}
With MailList do
begin
 LastName := 'Smith';
 FirstName := 'John';
 City := 'Toledo';
end;
{add the record to the database}
APPEND;

 TOPAZ Technical Reference 177

__

AppendDBF procedure DBF4

Purpose: Appends a new record to the specified DBF with the contents of R.CurRecord^.

Declaration: AppendDBF(R : DBFRecord);

Parameter: R is of type DBFRecord

Notes: This is a low level TOPAZ command. After appending the contents of R.CurRecord to the file
(R.filename), the database will be positioned at R.Numrecs + 1. AppendDBF may not be
mixed with high or intermediate level commands on the same file. For details see the section
"Low Level Access to dBASE Files" in the Appendix of this manual.

 178 TOPAZ Technical Reference

__

AppendFrom procedure DBF4

Purpose: Adds records from a specified database file (the "source" file) to the currently selected
database (the "destination" file).

Declaration: AppendFrom(Source : String; WhileFunction : Pointer);

Parameters: Source is the filename of the database file to be appended from. If the source file does not
exist, or is not a dBASE file, an error is generated. Unlike dBASE, the source file may already
be open in a workarea other than the one currently selected.

If the source file is already open then the WhileFunction parameter may point to an optional
user-defined boolean function which can end the append process by returning a value of False.
When not using the WhileFunction capability the parameter should be specified as NIL.

Notes: It is not necessary for the structures of the two database files to be identical. Records will be
added to the currently selected database if there are any matching field names. If fields with
the same field name have different data types, data will be converted if possible, to the data
type of the corresponding field in the current database. If SET_DELETED_ON has been
called, deleted source records will NOT be appended. If the source file is already open it can
also be filtered by using SET_FILTER_TO in the source workarea. If the source file is already
open in another area, the appending process will begin with the current record in the source
file. If the source file is not open, appending will begin at the first record of the source file.
AppendFrom cannot be used to append itself. AppendFrom will position the currently
selected database to the last record added. If no records were added, the position of the
database will be unchanged.

AppendFrom will also allow you to append from a virtual file if you specify the filename as:
filename+' VIRTUAL' as in:

AppendFrom('MYFILE VIRTUAL',nil);
or AppendFrom('*MYFILE* VIRTUAL FILE',nil);

You are free to add VIRTUAL, VIRTUAL FILE, LINKED, or LINKED LIST as the clause.

Example 1: {Add all records from NEWCUST.DBF to CUSTOMER.DBF. NEWCUST.DBF may or
may not be already open in another area}

USE('customer', @customer, SizeOf(customer));
AppendFrom('newcust', NIL);

Example 2: {append new customers from California only, from the NEWCUST file to the
CUSTOMER file. Since we wish to filter the NEWCUST database, it must be
open and filtered in another workarea }

{$F+}

 TOPAZ Technical Reference 179

function CaliforniaOnly : Boolean;
begin
 CaliforniaOnly := NewCust._STATE = 'CA';
end;

begin
 SELECT(1);
 USE('customer', @customer, SizeOf(customer));
 SELECT(2);
 USE('newcust', @newcust, SizeOf(newcust));
 SET_FILTER_TO(@CaliforniaOnly);
 GoTop;
 SELECT(1);
 AppendFrom('newcust', NIL);
end;

Example 3: {only append new customers with names from 'A' to 'L' from the source

file NEWCUST to the CUSTOMER file. This can be achieved by indexing the
NEWCUST data on name, and using the "while function" to terminate
appending.}

{$F+}
function LessThanM : Boolean;
begin
 LessThanM := NewCust._NAME[1] < 'M';
end;

begin
 SELECT(1);
 USE('customer', @customer, SizeOf(customer));
 SELECT(2);
 USE('newcust', @newcust, SizeOf(newcust));
 INDEX_ON(@NameKey, 'newcust');
 SELECT(1);
 AppendFrom('newcust', @LessThanM);
end;

 180 TOPAZ Technical Reference

__

AppendFromSDF procedure DBF4

Purpose: Appends records to the currently selected database from a Standard Data File (SDF) having
exactly the same structure as the selected file.

Declaration: AppendFromSDF(Filename: PathStr; ValidFunc: Pointer);

Parameters: Filename is the name of the SDF to append from. If no extension is given, an extension of
.TXT will be assumed. ValidFunc is a pointer to a programmer-defined boolean function
specifying which records in the SDF are to be added.

Notes: A DBF file must be open and selected. If the application is multi-user, the DBF file must be
opened Exclusive and locked with the ALOCK or FLOCK procedures. The SDF file must
exist and be a sharable R/O or R/W file.

An SDF file is an ASCII text file representing the data in a DBF file (less the first byte holding
the Deleted flag). There is no header, and each record is separated by a carriage return and
line feed (in either order). There are no delimiters or spaces between fields. The file ends with
an end-of-file mark (^Z). SDF files can be created in dBASE systems with a call to COPY TO
<filename> SDF, or in TOPAZ with a call to CopyToSDF(<filename>).

AppendFromSDF checks that the specified SDF file size is consistent with a whole number
of records.

Prior to appending each record, AppendFromSDF calls a programmer-defined ValidFunc
function (unless ValidFunc is NIL), and receives confirmation to append. That is, your
function examines the Pascal data buffer and returns True if the record is to be appended,
False otherwise. See AppendFrom, CopyToSDF.

Example 1: {append all records from an SDF called NEWLIST.TXT:}
SelectAlias('customer');
AppendFromSDF('newlist', NIL);

 TOPAZ Technical Reference 181

Example 2: {append only California customers from NEWLIST.TXT:}

{$F+}
function CaliforniaOnly : Boolean;
begin
 CaliforniaOnly := customer._STATE = 'CA';
end;

begin
 SelectAlias('customer');
 AppendFromSDF('newlist', @CaliforniaOnly);
 .
 .

 182 TOPAZ Technical Reference

__

AssignMemo procedure MEMO

Purpose: Prepares a variable of type text, permitting the programmer to access text data in memos with
standard text file I/O syntax.

Declaration: AssignMemo(var M : Text; var MemoField : LongInt);

Parameters: M is analogous to a file var. It allows you to "open" individual memos as though they were
individual files. MemoField is the contents of a memo field of the current record of the
currently selected database.

Notes: AssignMemo should not be confused with assigning a file var to the memo file itself. Instead,
the programmer should liken each memo within the memo file as a small imaginary file. Once
AssignMemo is called, all other text I/O routines (such as ReadLn, EOF, etc.) apply to the
memo. See examples below, and the pertinent discussion in the Tutorial section of this
manual.

AssignMemo must not be called when the editor is active.

Example: {uppercase the contents of the current memo field _NOTES in the
CALLS.DBF database, and send to printer}

AssignMemo(m, calls._NOTES);
Reset(m);
while not EOF(m) do

 begin
 ReadLn(m, line);
 WriteLn(lst, UPPER(line));
 end;
Close(m);

 TOPAZ Technical Reference 183

__

At procedure SAYGET4

Purpose: Prints a string starting at a specified location on the screen. At is like the dBASE @ row,col
SAY <string> except that only parameters of type string may be passed to this procedure.

Declaration: At(Col, Row : Byte; S : String);

Parameter: Col and Row define the column and row starting position on the screen (in Pascal coordinates)
of string S. See notes below on using dBASE coordinate conventions.

Notes: At is the analog of dBASE's "@" command, NOT dBASE's "AT" function (The Pascal
equivalent of dBASE's "AT" is the "pos" function). Screen coordinates can also be given in
the dBASE convention of row, column (starting at 0,0) using the procedure
Set_Coordinates_To(dBASE). At then expects the coordinate parameters to be passed as
"row", "column" (where 0,0 = upper left corner of the screen). The output of At is not
redirected to the printer if SET_PRINT_ON has been called.

The colors used by At are the SAY colors last set by SET_COLOR_TO.

Example: At(10,15,'Calculation will take '+time+' minutes.');

 184 TOPAZ Technical Reference

__

AtPrint procedure TZPRINT

Purpose: Specifies a string or printer command to be send to the printer, to be printed at a specified
location on the page.

Declaration: AtPrint(Col, Row : Byte; S : String);

Parameters: Col and Row are the column and row coordinates on the page where the string S is to be
printed. The upper left corner of the page corresponds to Col, Row = 1,1.

Notes: AtPrint can place characters and strings anywhere on the page, in any order. At the time the
page is printed, TOPAZ will send data to the printer in the proper order. The size of the image
to be printed is specified by a call to Set_PageSize_To (and defaults to 80 columns by 66
rows). The page coordinate system is separate and independent from the screen coordinate
system in TOPAZ.

Strings which exceed the right margin of the page image will be clipped. Strings which are
sent to a row that exceeds the page size will not be printed. The page image can be printed
with either the PrintPage or EJECT commands.

Printer commands (for bold, underline, italics, etc.) can be specified in the call to AtPrint
without taking up column positions. Such printer commands must be framed by a "framing
character" which normally is the null character, #0. The programmer may set this framing
character to any other character by assigning the global character PrintFramingChar to the
new character. Any number of printer commands can be embedded with text (see example).
An alternate method of specifying printer commands is with the AtPrintControl command.

See EJECT, PrintPage, Set_PageSize_To, AtPrintControl, ClearPage.

 TOPAZ Technical Reference 185

Example 1: {print client mailing labels, 3 across, from a database. Notice that the
vars LabelWidth, LabelHeight, and NumberAcross permit you to print
labels with any format you want!}
USE('client', @client, SizeOf(client));
LabelWidth := 35; { label is 3.5 inches wide }
LabelHeight := 6; { 6 lines from label top to label top }
NumberAcross := 3; { number of labels across the sheet }
PageHeight := 66; { 60 for most laser printers}
Set_PageSize_To(NumberAcross*LabelWidth, pageHeight);
GoTop;
Row := 1;
while (not dEOF) do

 begin
 for i := 0 to NumberAcross-1 do
 begin
 if not dEOF then
 begin
 r := Row;
 with client do
 begin
 AtPrint(LabelWidth*i+1, r, _NAME);
 Inc(r);
 AtPrint(LabelWidth*i+1, r, _ADDR1);
 Inc(r);
 if TRIM(_ADDR2)<>'' then
 begin
 AtPrint(LabelWidth*i+1, r, _ADDR2);
 Inc(r);
 end;
 AtPrint(LabelWidth*i+1, r, TRIM(_CITY) + ' ' +_STATE

 + ' ' + _ZIP);
 Inc(r);
 end;
 SKIP(1);
 end;
end;
Row := Row + LabelHeight;
if dEOF or (Row + LabelHeight -1 > PageHeight) then
 begin
 EJECT;
 Row := 1;
 end;
end;

Example 2: {use of bold, underline, italics. Printer code and data are mixed in the
same call to AtPrint. Printer code is framed by #0 chars}
const Bold = #27'E';
AtPrint(10,10, #0Bold#0); {inserts Bold command at 10,10}
AtPrint(10,10,'This will be BOLD!'); {literal data}
AtPrint(10,10,'#0Bold#0'This will be BOLD!');

Example 3: {embedding the framing character into the print command}
const Bold = #0#27'E'#0; {note that framing character is embedded in

the constant}
AtPrint(10,10, Bold); {inserts Bold command at 10,10}

Example 4: {customizing the framing character}
PrintFramingChar := #255;
AtPrint(10,10, #255#27'E'#255'Hello World');

 186 TOPAZ Technical Reference

__

AtPrintControl procedure TZPRINT

Purpose: Specifies a printer control code to be sent to the printer at a specified location on the page.
This command is to be used in conjunction with the AtPrint command.

Declaration: AtPrintControl(Col, Row : Byte; PrinterCode: String);

Parameters: Col and Row are the column and row coordinates on the page where the control code
PrinterCode is to be printed. The upper left corner of the page corresponds to Col, Row = 1,1.

Notes: AtPrintControl may place printer codes anywhere on the page, in any order. At the time the
page is printed, TOPAZ will send data to the printer in the proper order.

The size of the image to be printed is specified by a call to Set_PageSize_To (and defaults to
80 columns by 66 rows). The page coordinate system is separate and independent from the
screen coordinate system in TOPAZ. If Col or Row exceed the size of the page image, the
control code will not be sent to the printer. The page image can be printed with either the
PrintPage, SendPage, or EJECT commands.

See AtPrint, EJECT, Set_PageSize_To, PrintPage, SendPage.

Example: {use of bold, underline, italics}
const Bold = #27'E';
AtPrintControl(23,10, Bold);
{inserts constant Bold command at 10,10}
AtPrint(10,10,'This will be BOLD!'); {literal data}

 TOPAZ Technical Reference 187

__

AtPrintGrid procedure TZPRINT

Purpose: Constructs a grid of vertical and horizontal lines of the page image to be sent to the printer or
alternate device.

Declaration: AtPrintGrid(UpLtCol, UpLtRow,
LowRtCol, LowRtRow : Word;
LineStyle : Byte;
NumLinHorizontal : Word;
NumLinVertical : Word);

Parameters: UpLtCol and UpLtRow are the coordinates of the upper left corner of the grid on the page.
Similarly, LowRtCol and LowRtRow are the coordinates of the lower right corner of the grid.
The upper left corner of the page corresponds to 1,1. LineStyle is the style of lines to be drawn
for both vertical and horizontal lines. The values of LineStyle, along with their predefined
constants are:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

NumLinHorizontal and NumLinVertical are the number of horizontal and vertical lines to be
drawn. Thus, the number of cells that result are (NumLinHorizontal + 1) * (NumLinVertical
+ 1).

Notes: AtPrintGrid draws in all appropriate box parts (i.e., corner pieces, tee's and intersections).
The page coordinate system is separate and independent from the screen coordinate system
in TOPAZ. Since AtPrintGrid only adds to the page image (rather than actually sending
characters to the printer), you are free to fill in the grid cells with the AtPrint procedure after
the call to AtPrintGrid. You may also make multiple calls to AtPrintGrid to build a page
image with several grids (see Example 3 below). See AtPrint, PrintPage, SendPage,
AtPrintControl, ClearPage, Set_PageSize_To, AtPrintLine.

Example 1: AtPrintGrid(1,1,21,10,DoubleTopSingleSide,2,3);
PrintPage;
{sends the following grid to the printer:}

?4444L4444L4444L4444@
* * * * *
* * * * *
G4444P4444P4444P4444I
* * * * *

 188 TOPAZ Technical Reference

* * * * *
G4444P4444P4444P4444I
* * * * *
* * * * *
B4444N4444N4444N4444A

Example 2: AtPrintGrid(1,1,17,7,SingleLine,2,3);
SET_CONSOLE_ON;
SendPage;
{displays the following grid on the monitor:}

+)))0)))0)))0))),
* * * * *
/)))3)))3)))3)))1
* * * * *
/)))3)))3)))3)))1
* * * * *
.)))2)))2)))2)))-

Example 3: {draw two grids side by side}
AtPrintGrid(1,1,18,18,SingleLine, 2,2);
AtPrintGrid(19,1,36,18,SingleLine, 2,2);
PrintPage;
{prints the following}
+)))))0)))))0)))),+)))))0)))))0)))),
* * * ** * * *
* * * ** * * *
* * * ** * * *
* * * ** * * *
* * * ** * * *
/)))))3)))))3))))1/)))))3)))))3))))1
* * * ** * * *
* * * ** * * *
* * * ** * * *
* * * ** * * *
* * * ** * * *
/)))))3)))))3))))1/)))))3)))))3))))1
* * * ** * * *
* * * ** * * *
* * * ** * * *
* * * ** * * *
.)))))2)))))2))))-.)))))2)))))2))))-

 TOPAZ Technical Reference 189

__

AtPrintLine procedure TZPRINT

Purpose: Constructs a vertical or horizonal line on the page image to be sent to the printer or alternate
device.

Declaration: AtPrintLine(Direction : DirectionType;
Col, Row, Len, LineStyle : Word);

Parameters: DirectionType is an enumerated type = (vertical, horizontal), and Direction then specifies
whether the line is to be constructed vertically or horizontally. Col and Row are the starting
column and row of the line (vertical lines are drawn down from Row, and horizontal lines are
drawn to the right from Col. The upper left corner of the page is at coordinate 1,1. Len is the
length of the line. The values of LineStyle, along with their predefined constants are:

NoLine = 0 SolidLine = 3
SingleLine = 1 SingleTopDoubleSide = 4
DoubleLine = 2 DoubleTopSingleSide = 5

Notes: AtPrintLine draws in all appropriate box parts (i.e., corner pieces, tee's, and intersections).
The page coordinate system is separate and independent from the screen coordinate system
in TOPAZ. Since AtPrintLine only adds to the page image (rather than actually sending
characters to the printer), you are free to mix calls drawing various lines in any order desired
before actually producing the page image. See AtPrint, PrintPage, SendPage, AtPrintControl,
ClearPage, Set_PageSize_To, AtPrintGrid.

Example: {draw a cross}
AtPrintLine(Horizontal, 1, 5, 10, SingleLine);
AtPrintLine(Vertical, 5, 1, 8, SingleLine);
PrintPage;
{sends the following to the printer:}

 *
 *
 *
))))3)))))
 *
 *
 *
 *

 190 TOPAZ Technical Reference

__

AvailableMemory function VFILES

Purpose: Determines how much memory is available for storage of Virtual File data.

Declaration: AvailableMemory (MemoryType : String) : LongInt;

Parameters: MemoryType indicates which type of memory is to be sized. Recognized options are:

BIGGEST returns the largest amount of free memory

HEAP returns the amount of unused Heap (MemAvail)

EMS returns the amount of unused Expanded memory

EXT returns the amount of unused Extended memory

DISK returns the amount of available disk storage on the current drive.

Notes: If one of the above 5 keywords is not found, AvailableMemory returns equal to 0. See
EvaluateBiggest, FreeSpace, and RequiredMemory.

Example: ExpectedDataSize := 1000 * SizeOf (MyData);
if AvailableMemory ('EMS') > ExpectedDataSize then
 USE ('*MyData* VIRTUAL FILE TO EMS',

@MyData, SizeOf (MyData))
else
 USE ('MyData.DBF', @MyData, SizeOf (MyData));{goes to disk!}

 TOPAZ Technical Reference 191

__

Before function TZUTILS

Purpose: Returns the portion of a string preceding a specified string.

Declaration: Before(SubStr, S : String) : String;

Parameters: SubStr specifies the string to be searched for. S is the string to examined.

Notes: Before returns the empty string if SubStr cannot be found in S. Before and After can be used
to buid a simple parser (see Example 4). See Between, After.

Example 1: s := 'We hold these truths to be self-evident.';
WriteLn(Before('truths',s));
{displays "We hold these "}

Example 2: {parse out a filename and extension}
s := 'myfile.ext';
FileName := Before('.',s);
Extension := After('.',s);

Example 3: {parse out a disk drive from a filename}
s := 'A:CUSTOMER.DBF';
DriveLetter := Before(':', s);

Example 4: {simple parsing function built from the Before and After routines}

function Parse(var Source : String; Separator : String): String;
{ must compile with $V- }
begin
 Parse := Before(Separator, Source);
 Source := After(Separator, Source)
end;

 192 TOPAZ Technical Reference

__

Between function TZUTILS

Purpose: Returns the portion of a string found between two specified strings.

Declaration: Between(SubStr1, SubStr2, S : String) : String;

Parameters: SubStr1 specifies the prefix string, SubStr2 specified the suffix string. S is the string to
examined.

Notes: Between returns the empty string if either SubStr1 or SubStr2 cannot be found in S. See
Before, After.

Example 1: s := 'We hold these truths to be self-evident.';
WriteLn(Between('We hold', 'to be', s));
{displays " these truths "}

Example 2: {parse out items stored in a string}
s := '(first(second)third)';
SecondItem := Between('(', ')', s);

 TOPAZ Technical Reference 193

__

BlankField procedure SAYGET4

Purpose: Used as a modifier to a SayGet field. Causes data displayed in the data entry field to be reset
to blanks when a character is entered in the first column of the field. Data is unaffected
otherwise.

Declaration: BlankField;

Notes: Emulates the @K PICTURE function in Clipper, and can also be invoked in TOPAZ with

PICTURE('@K') or PICTURE('@K <picture format>'). Has no effect if no SayGet
statements are active. If <Ctrl-U> is pressed by the end-user, the blanked data will be restored.
See SayGet, PICTURE.

Example: FileName := '*.*';
SayGet(10,10,'Enter Filename: ',FileName,_S,32,0);
BlankField;
ReadGets;
{If the end-user types any character in the first position of the field,
'*.*' is automatically blanked out}

 194 TOPAZ Technical Reference

__

Box procedure SAYGET4

Purpose: Draws and fills a rectangle on the screen with an optional heading string.

Declaration: Box(Col1, Row1, Col2, Row2, LineStyle : Byte;
Heading : String);

Parameters: Col1, Row1 are the column and row coordinates of the upper left corner of the rectangle.
Col2, Row2 are the column and row coordinates of the lower right corner of the rectangle.
Coordinates may be specified in either the Pascal or dBASE convention (see
Set_Coordinates_To). Coordinates are absolute, and are NOT relative to the current Pascal
window settings.

LineStyle determines the characters used to draw the rectangle, and can range from 0 to 5,
with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed:

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Raised causes boxes made of single and double lines to appear raised from the background
(emulating a "chiseled" appearance common in graphical interfaces). Raised will have no
effect on boxes where LineStyle is NoLine or SolidLine. Boxes made with the illusion of
being raised are suggested when constructing Mouse buttons (see the PHONE.PAS example
in PHONE.ZIP provided).

Recessed is the opposite of Raised. Boxes made of single and double lines will appear to be
sunken, or depressed. If both Raised and Recessed are added to LineStyle, the box will be
Raised. A recommended technique is to placed Raised boxes inside a larger Recessed box,

 TOPAZ Technical Reference 195

or to momentarily recess a box when it is selected (again, see the PHONE.PAS example in
PHONE.ZIP).

In addition, a transparent drop shadow may be specified by adding the predefined constant
Shadow (128, or $80) to LineStyle.

Boxes can be "exploded" onto the screen. Rather than being instantly presented, an exploding
box grows smoothly and quickly into its final shape. Boxes can be exploded by adding 64 or
the predefined constant Explode to LineStyle. The rate of explosion can be adjusted by
modifying the global byte ExplodeRate. The units of ExplodeRate are in milliseconds per step,
and defaults to 20 milliseconds per step. This gives a smooth but quick explosion effect.
Regardless of the size of the box, boxes will always take the same amount of time to expand.
You can override the Explode constant with the global variable ExplodeMode of enumerated
type (Always, Never, Context). The default value is Context, and enables the Explode
constant to have an effect as specified in your source code. If ExplodeMode is to Always, all
boxes (as well as BROWSE, Pick, Dialog, and Progress windows) explode regardless of
whether Explode is added to LineStyle.

Heading specifies a string that will be displayed in the center (if possible) of the top line of
the rectangle.

Notes: The rectangle will be drawn with the SAY foreground and background colors established by
the most recent SET_COLOR_TO statement. The interior of the rectangle will be clear to the
same colors.

By default, Box clears the area interior to the box. Some applications may require that the box
interior NOT be cleared. In these cases, you may set the global boolean ClearBoxes to False.

Example 1: Box(10, 12, 42, 17, DoubleLine + Shadow, 'My Box');

Example 2: Box(10, 12, 42, 17, SingleLine + Explode, '');

Example 3: Box(10, 12, 42, 17, DoubleLine + Shadow + Explode, '');

Example 4: Box(10, 12, 42, 17, SingleLine + Raised, '');

 196 TOPAZ Technical Reference

__

BROWSE procedure BROWSE4

Purpose: Enters a full-screen edit mode in which records of the currently selected database are
displayed one per line, with the fields aligned in columns. Initially, the current record is
displayed as the first record on the screen. Cursor keys permit the end-user to scroll vertically
and pan horizontally to view the entire database. Fields may be edited, and records may be
appended, deleted and recalled, and the entire file may be PACKed and re-indexed from within
BROWSE.

Declaration: BROWSE(CommandLine : String);

Parameter: CommandLine allows the programmer to specify which fields are to be displayed, in which

order, and what operations are permitted at run time. See Notes below for details.

Units Used: SAYGET4, DBF4, INDEX4, VIDPOP

Notes: Special keys that are active during BROWSE are:

<Cursor Keys>. Move up and down between records, and left and right between fields.

<Ctrl-Left Arrow>, <Ctrl-Right Arrow> moves left and right by "screenfulls".

<Home> go to first record.

<End> go to last record.

<Ctrl-Home>. Edit a memo field.

<Ctrl-U> deletes or Recalls the current record.

<Esc> or <Enter> default keys to end the BROWSE session and returns to the calling program.
The database will be positioned at the record that was last highlighted. See the global set
BrowseExitKeys to customize the end-BROWSE key set.

<F2>. Enters edit mode where the currently highlighted field of the current record may be
edited. The editing mode can also be entered by typing any alphanumeric character while
positioned on a field. The editing keys are identical to those in a ReadGets. Edit mode is
terminated by the same keys as in a ReadGets.

<F3>. APPENDs a new record.

<F4>. PACKs the database.

 TOPAZ Technical Reference 197

<F5>. Repositions the database to a specified record number.

<F6>. FINDs the record with a specified key. Database must have a primary index set.

<F7>. Permits the end-user to modify the BROWSE command line while in BROWSE at run
time, providing the "COMMAND" clause was specified (see Clauses, below).

<F8>. Search. Allows the end-user to do a sequential search of the database utilizing the
TOPAZ Search routine.

<F10>. Permits the end-user to pop-up a menu. The menu choices are:

 Edit - same as <F2>

 Append - same as <F3>
 Delete - same as <Ctrl-U>

 Pack - same as <F4>
 Goto - same as <F5>

 GoTop - position database on first logical record
 GoBottom - position database on last logical record
 Search - same as <F8>

 Continue - continue Search from current position
 Quit Menu - exit mfrom the menu

CommandLine clauses are:

COMMAND. Normally the end-user has no way to alter the BROWSE command line while
BROWSE is executing. By specifying the clause COMMAND, the programmer permits the
end-user to edit the passed command line while in BROWSE by pressing the <F7> key.

CONTINUE. Calls Search with StartAtTop = false and will continue the prior search. It
can be called as many times as you like.

FIELDS < [fieldname list]>. Only named fields specified in the fieldname list enclosed
in square brackets are displayed, in the specified order. Field names may be separated by
spaces or commas. Field names are dBASE fields (as CREATEd), and not necessarily the
Pascal field names in the users record area. Field names preceded by a minus sign will inhibit
editing of that field. "Alias" field names can be assigned to any field by following the actual
field name with an alias name in double quotes.

FIRSTFIELD. Specifies which field should be displayed in the left most data column when
BROWSE is invoked.

FREEZE <FIELDNAME>. Editing is restricted to the specified field, although you may still
pan the display left and right to view the entire record.

LOCK <n>. n specifies the number of fields that remain fixed on the left side of the screen.
LOCKed fields will not be panned.

 198 TOPAZ Technical Reference

NOAPPEND. Inhibits the user from APPENDing records to the database.

NODELETE. Inhibits the end-user from deleting or recalling records.

NOFOLLOW. If an index is active, this inhibits movement of the database record if a key
field is changed. NOFOLLOW will have no effect if no primary index is open. By default the
database will be positioned on the same record after the key field has changed, and the screen
is redrawn with this record at the top. By specifying NOFOLLOW the database is positioned
on the following record. With NOFOLLOW the altered record may disappear from the display.

NOMENU. Inhibits the display of the top menu of keystroke choices.

NOMODIFY. Inhibits the end-user from editing any field of any record, deleting, recalling,
or appending records, or PACKing the file.

NOPACK. Inhibits the user from PACKing the database.

NOPROMPT. Inhibits confirmation and warning messages that normally appear on
BROWSE's bottom row.

NOSTATUS. Inhibits the display of the BROWSE status line. The status line contains the
following information: Current drive letter, selected database filename, primary index
filename, length of the index key, the first 8 characters of the key for the current record, the
record number of the current record, and the total number of records in the database.

PLAIN. Equivalent to NODELETE, NOPACK, NOAPPEND, NOMODIFY, NOMENU,
NOSTATUS, and NOPROMPT. BROWSE will display data with field headings only, and
will not permit the end-user to modify the datafile in any way.

When a clause inhibits an action in BROWSE, the key stroke associated with that action will
not be listed in the menu.

The color of the fields displayed and edited in BROWSE are determined by the most recent
calls to SET_COLOR_TO, and Set_Highlight_To. The Set_Browse_Color_To procedure
allows the programmer to specify the colors of deleted records, and of the heading and status
lines of the display. The procedure Set_BrowseWindow_To allows the programmer to specify
an area of the screen that BROWSE will appear in. For additional routines that allow the
programmer to build in special features to BROWSE see Set_Browse_Calc_To, BrowseEdit,
Set_EditDirection_To, UpdateBrowseRow, and BrowseField.

There are several global vars that the programmer may use to further customize the
appearance of BROWSE. The global set of char BrowseExitKeys permits the programmer
to specify which key strokes will terminate the BROWSE session. Note, however, that the
characters in the Watchkeys set takes precedence over BrowseExitKeys. The programmer may
specify the global char BrowseFieldSeparator, which replaces the dashes in the field heading
row. The Browse Calc routine can also force BROWSE to terminate by setting the global
boolean ExitBrowse to True.

 TOPAZ Technical Reference 199

See the section entitled "BROWSE" in the Tutorial section of this manual for additional
information. See the program BROWSE.PAS in the SAMPLES.ZIP file on the distibution
disk(s) for a "compilable" BROWSE.EXE utility that can be used directly form DOS.

Example 1: {simple browse:}
BROWSE(' ');

Example 2: {browse with fields specified:}
BROWSE('FIELDS [LastName, FirstName, -JobTitle]');

Example 3: {in this example, editing of the JobTitle field would not be permitted}
BROWSE('FIELDS [LastName FirstName -JobTitle City State Zip Birth

Date]
L O C K
2 ,
NOAPP
E N D
NODEL
ETE')
;

Example 4: {LastName and FirstName are always the first two fields displayed, and
the end-user is prevented from either adding new records or
deleting/recalling existing records. Note that commas between field
names are optional.}

Example 5: BROWSE('PLAIN');
{display only field headings and data, inhibit altering the datafile in
any way}

Example 6: BrowseExitKeys := [#27];
BROWSE('');
{exit browse with ESCape key only}

 200 TOPAZ Technical Reference

__

BrowseEdit function BROWSE4

Purpose: Intended for use by a user-defined calculation procedure active during a BROWSE session.
Returns True if the end-user has just edited a field in BROWSE, False if the end-user has only
changed rows or pressed a watchkey.

Declaration: BrowseEdit : Boolean;

Notes: If the global set of char WatchKeys has been set by the programmer prior to calling BROWSE,
the combination of BrowseEdit and LastKey can be used to establish what action has just
occurring in BROWSE. Refer to the table below:
+))))))))))))))))))))))0)))))))))))0)))))))))))))))))),
* * * *
* If end-user.. *BrowseEdit * LastKey *
* *returns.. * is set to.. *
/))))))))))))))))))))))3)))))))))))3))))))))))))))))))1
* ..Edited Cell * TRUE * Last Keystroke *
/))))))))))))))))))))))3)))))))))))3))))))))))))))))))1
* ..Changed Rows * FALSE * #0 *
/))))))))))))))))))))))3)))))))))))3))))))))))))))))))*
* ..Pressed a WatchKey * FALSE * Last Keystroke *
.))))))))))))))))))))))2)))))))))))2))))))))))))))))))-

See BROWSE, Set_Browse_Calc_To, BrowseField.

Example: See the example in Set_Browse_Calc_To.

 TOPAZ Technical Reference 201

__

BrowseField function BROWSE4

Purpose: Intended for use by a user-defined calculation procedure active during a BROWSE session.
Returns the field number of the field the end-user has just edited, or the field being highlighted
if the end-user has only changed rows.

Declaration: BrowseField : Byte;

Notes: See BROWSE, Set_Browse_Calc_To, BrowseEdit.

Example: See example in BROWSE.PAS in the SAMPLES.ZIP file on the TOPAZ distribution disk(s).

 202 TOPAZ Technical Reference

__

BrowseIsActive function BROWSE4

Purpose: Used to determine if PushBrowse may be called before invoking BROWSE. For use by sub-
routines which may be called by user-defined Browse Calc routines.

Declaration: BrowseIsActive : Boolean;

Notes: When invoking BROWSE from a sub-routine that may or may not be called from a Browse
Calc procedure it is useful to know if it is necessary to call PushBrowse first since
PushBrowse will generate an error if BROWSE is not currently running.

Example: procedure BrowseCustomerDatabase;
var SaveArea : Byte;
 PB : Boolean;
begin
 SaveArea := CurrentArea;
 SelectAlias('CUSTOMER');
 PB := BrowseIsActive;

 if PB then PushBrowse;
 BROWSE('');
 if PB then PopBrowse;
end;

 TOPAZ Technical Reference 203

__

BrowseRow function BROWSE4

Purpose: For use in user-defined calc procedures. Returns the absolute row number of the currently
highlighted record on the screen.

Declaration: BrowseRow : Integer;

 204 TOPAZ Technical Reference

__

Calculator function TZCALC

Purpose: Pops up a 4-function calculator, returning the result from the calculator's display.

Declaration: Calculator(Seed : String; Len, Dec : Byte) : String;

Parameters: Seed is the initial numeric value to appear in the calculator display area. An empty string is
equivalent to zero. Len is the maximum width of the calculator display (including signs and
decimal point). Len must be greater than 0 and less than or equal to 22. Dec is the number of
decimal places to be displayed.

Notes: It may seem odd for Calculator to be seeded with a string rather than a real and to return a
string. The reason is that the most common application of Calculator is attached to a data
entry field in a SayGet..ReadGets session, either with a hot key or as part of a validation
routine. In this case, the data entry field being edited is available to you as SGBuffer^, i.e., a
pointer to a string. Thus, Calculator can be seeded with the contents of SGBuffer^, and
SGBuffer^ can be set to the result of Calculator without the need for string/numeric
conversions. If the end-user abandons the calculator (by pressing the <Esc> key), Calculator
returns an empty string. See Set_Calc_Color_To, Set_CalcWindow_To.

Example 1: {pop up calculator as an end-user utility, disregard the results}
{$X+} {use extended syntax (TP6.0 only)}
Calculator('',10,2);

Example 2: {pop up a calculator and save the results}
Result := Calculator('',6,3);
if Result<>'' then SalesTax := RealVal(Result);

Example 3: {pop up calculator with <F1> during a SAYGET data entry session}
procedure PopUpCalc;
begin
Result := Calculator(SGBuffer^,10,2);
if Result<>'' then SGBuffer^ := Result;
end;
.
Set_Fkey(F1, @PopUpCalc);
SayGet(10,10,'Amount Total: ',Total,_R,10,2);
ReadGets;

 TOPAZ Technical Reference 205

__

CancelAllSpoolFiles procedure PRINTCOM

Purpose: Cancels all current print jobs managed by PRINT.COM.

Declaration: CancelAllSpoolFiles;

Notes: PRINT.COM has no return code for this function so it is not possible to determine if it was
successful except by looking at the print file queue itself. See QUEUE.PAS for a complete
example.

Example: if DialogBox('Cancel all print jobs?','BUTTONS=Yes No') = 'Y' then
 CancelAllSpoolFiles;

__

CancelSpoolFile function PRINTCOM

Purpose: Permits cancelling the printing of one or more files which are in the PRINT.COM queue.

Declaration: CancelSpoolFile(Filename : PathStr) : Word;

Parameters: Filename may be a single filename or a wildcard representing one or more files in the
PRINT.COM queue.

Notes: If successful CancelSpoolFile returns zero otherwise it returns a DOS error code. See
QUEUE.PAS for a complete example.

Example: if CancelSpoolFile('*.TXT') <> 0 then
 DialogBox('No files removed from the print queue',ScrollPressAnyKey);

 206 TOPAZ Technical Reference

__

CancelSpooling procedure SPOOLER

Purpose: Empties the TOPAZ print spooler buffer, if installed.

Declaration: CancelSpooling;

Example: SayGet(10,10,'Stop Printing? ',Stop,_L,1,0);
ReadGets;
if Stop then CancelSpooling;

 TOPAZ Technical Reference 207

__

CDAY function TIMEDATE

Purpose: Returns the day as a numeric string from the date parameter, according to the current date
format.

Declaration: CDay(mdate : String10) : String2;

Example: Set_Date(German);
Writeln('Heute ist der '+ CDay(SystemDate) + '. Tag des Monats

'+ CMonth(SystemDate));
{will display "Heute ist der 24. Tag des Monats Januar"}

__

CDOW function TIMEDATE

Purpose: Returns the day of the week as a string for the specified date. Emulates the dBASE CDOW()
function.

Declaration: CDOW(Date : String10) : String10;

Parameter: date is a date in the format MM/DD/YY (if date format is American)

Notes: Returns "Monday ", "Tuesday ",..."Sunday ", padded with spaces to 9 characters, if date
format is American. Returns a string of 9 spaces if a blank date is passed. Use SET_DATE to
set the date format to other conventions. See SET_DATE, CDAY.

Example 1: At(10,10,'Today is ' + CDOW(SystemDate));

WriteLn('If it''s '+TRIM(CDOW(SystemDate))+' this must be
Belgium.');

Example 2: SET_DATE(German);
WriteLn('Heute ist ',CDOW(SystemDate));
{will display "Heute ist Montag"}

Example 3: WriteLn(CDOW(' / / '));
{will display 9 spaces, as no date was specified}

 208 TOPAZ Technical Reference

__

Center function TZUTILS

Purpose: Returns a string centered within a specified width.

Declaration: Center(S : String; W : Byte) : String;

Parameters: S is the string to be centered and W is the width in which to center S.

Notes: Center is useful in printing reports or in screen displays. The string S is not trimmed. If the
length of S is not less than W, and thus cannot be centered in W columns, Center simply
returns the string S unmodified. See Indent.

Example 1: {center string on screen}
WriteLn(Center('Hello World',80));

Example 2: {center string on wide carriage report}
WriteLn(Alternate, Center('EMPLOYEE LIST', 132));

Example 3: {center concatenated string}
WriteLn(Center(TRIM(FirstName) + ' ' + TRIM(LastName),80));

 TOPAZ Technical Reference 209

__

ChainISRAddress function TZCOMMON

Purpose: Returns a pointer to the next timer-tick ISR routine to be executed.

Declaration: ChainISRAddress(Handle : Byte) : Pointer;

Parameter: Handle is the handle assigned to the current ISR returned by the call to AddISRVector.

Notes: As explained in the notes in AddISRVector, a programmer-defined ISR must find out from
TOPAZ what the next ISR in the timer-tick chain is to branch to. ChainISRAddress returns
this pointer. See AddISRVector, RemoveISRVector, SuspendISRs, ResumeISRs.

 210 TOPAZ Technical Reference

__

CharsInSpooler function SPOOLER

Purpose: Returns the number of characters left in the TOPAZ spooler to print.

Declaration: CharsInSpooler : Word;

Notes: This function can be used by the application to determine whether to wait prior to ending or
halting the program, or changing the spooler's parameters.
See SET_PRINTER_TO, Set_Spooler_Size, and Set_PacketSize_To.

Example: {wait for the spooler to finish before ending the program}
Repeat until CharsInSpooler = 0;

 TOPAZ Technical Reference 211

__

ClearEOL procedure SAYGET4

Purpose: Clears a line on the screen to end of row starting at a column, with the currently selected SAY
color, established by the most recent call to the procedure SET_COLOR_TO.

Declaration: ClearEOL(Col, Row : Byte);

Parameter: Col and Row are the column and row coordinates in Pascal unless
Set_Coordinates_To(dBASE) has been called.

Notes: Cursor is placed at Col, Row after clearing the row. See Set_Coordinates_To. ClearEOL is
the same as Pascal's ClrEol except that starting coordinates are specified, and the cursor does
not have to be positioned first.

 212 TOPAZ Technical Reference

__

ClearGets procedure SAYGET4

Purpose: Releases all current SayGet's and releases memory allocated for them. Editing of fields is
prevented and variables are left unchanged. ClearGets is intended to be used to display
groups of data fields with PICTURE formatting, but with editing inhibited.

Declaration: ClearGets;

Notes: Same as "CLEAR GETS" in dBASE. ClearGets looks at the setting of Set_Repaint_On/Off.
If ON, the fields will be painted in the SAY colors; if OFF, in the GET colors. Must be called
after SayGets if ReadGets is not called. See SayGet, ReadGets, Set_Repaint_On/Off.

Example: SayGet(5,2 'Customer: ',customer,_S,20,0); PICTURE('@!')
SayGet(5,3 'High Balance: ', balance,_S,8,2);
SayGet(5,4, 'Date Due: ',due,_D,8,0);
WAIT('Press any key...');
ClearGets;

 TOPAZ Technical Reference 213

__

ClearPage procedure TZPRINT

Purpose: Disposes of an existing page buffer created with the Set_PageSize_To command. Used in
conjunction with the PrintPage command.

Declaration: ClearPage;

Parameters: None.

Notes: This command is not normally needed since the EJECT command calls ClearPage
automatically. In fact the EJECT command simply calls PrintPage and then ClearPage.

See AtPrint, PrintPage, Set_PageSize_To, EJECT.

Example: { print ten copies of the current page buffer }

for i := 1 to 10 do PrintPage;
ClearPage;

 214 TOPAZ Technical Reference

__

ClearRecord procedure DBF4

Purpose: Clears the record of the currently selected database to "empty" data.

Declaration: ClearRecord;

Notes: This procedure may be used in the process of appending new records to a database file. Using

the Pascal procedure FillChar to clear the work area to zeros will NOT have the same effect,
as the resultant data in the database file will not be completely dBASE compatible.

If REPLACE or APPEND is called after ClearRecord, the resulting record on disk will be
blank. Strings are initialized to full length with spaces, Logicals to False, Numerics to 0, and
Dates to " / / ". See APPEND, REPLACE.

Example: {add a new record to the Customer database:}
SELECT(CustomerFile);
ClearRecord;
With Customer Do
begin
 SayGet(10,10,'First Name:',_FirstName,_S,24,0);
 SayGet(10,11,'Last Name:',_LastName,_S,24,0);
 ReadGets;
end;
APPEND;

 TOPAZ Technical Reference 215

__

ClearScreenGets procedure SCRENGET

Purpose: Releases all memory allocated for the data entry embedded in a SAYWHAT?! data entry
screen

Declaration: ClearScreenGets (ScreenName : String10);

Parameter: ScreenName is the name of the SAYWHAT?! data entry screen that is to be deallocated.

Notes: This procedure applies only to screen images created by the SAYWHAT?! screen designer.
It is intended to be used after the program has loaded the screen data entry information with
a call to LoadScreenGets, and after a call to DoScreenGets. See example below. Also, see the
ScreenEdit procedure for a higher level data entry method that does not require calls to
ClearScreenGets.

Example: {assumes CUSTOMER.DBF file is open and the CUSTOMER.SQZ screen file
contains references to fields in CUSTOMER.DBF}

{Reserve memory to hold data entry field information embedded in the
SAYWHAT?! screen file CUSTOMER.SQZ:}
LoadScreenGets('CUSTOMER',Nil,0);

{Display the SAYWHAT?! screen:}
PopScreen('CUSTOMER');

{Edit the data entry fields contained in the screen:}
DoScreenGets('CUSTOMER', EditMode, Nil);

{Write results to disk:}
Replace;

{Clear memory holding data entry field information}
ClearScreenGets('CUSTOMER');

 216 TOPAZ Technical Reference

__

ClearWindowStack procedure VIDPOP

Purpose: Disposes of all screens currently in storage by PushWindow, without displaying them.

Declaration: ClearWindowStack;

Notes: This procedure can be used to do housekeeping at the top of a main menu or where ever you
want to dispose of any screens stored on the heap by PushWindow(). See PushWindow,
PopWindow.

Example: repeat
 { make sure all saved windows are disposed of }
 ClearWindowStack;
 PopScreen(@MainMenu);
 case MenuChar of
 'A' : AddRecord;
 'E' : EditRecord;
 end;
until MenuChar = 'Q';

 TOPAZ Technical Reference 217

__

CloseDatabases procedure DBF4

Purpose: CloseDatabases causes all databases and indexes currently open in all workareas to be
flushed and closed. To close an individual database without disturbing any other files use the
USE procedure.

Declaration: CloseDatabases;

Notes: Also closes any open indexes. CloseDatabases will not close any files opened with the low
level procedure OpenDBF. CloseDatabases is automatically called upon termination of your
program. See USE.

Example: USE('Customer ',@Customer, SizeOf(Customer));
USE('Invoices ',@Invoices, SizeOf(Invoices));
SET_RELATION_TO(@Link);
.
.
.
{after processing data with multiple files open, the program closes all
files before going on to the next task}
CloseDatabases;

__

CloseDBF procedure TZDBFLOW

Purpose: Closes any open DBF file.

Declaration: CloseDBF(R : DBFRecord);

Parameter: R is of type DBFRecord

Notes: This is a low level TOPAZ command, and cannot and should not be used on files opened with
the high level command USE.

 218 TOPAZ Technical Reference

__

CloseIndexes procedure INDEX4

Purpose: Closes all index files that are open in the current work area.

Declaration: CloseIndexes;

Notes: CloseIndexes is faster and cleaner than using SET_INDEX_TO(NIL,'',n) for each index that
is open. Closing a database with USE('',NIL,0) or all databases with CloseDataBases however
will also automatically close all index files currently open for those databases. Thus
CloseIndexes should be used when the indexes for a single database are to be closed, but the
database is to remain open. See CloseDatabases, SET_INDEX_TO, USE.

 TOPAZ Technical Reference 219

__

CloseLibrary procedure VIDPOP

Purpose: Closes the specified screen and menu library that was previously opened by a call to
OpenLibrary.

Declaration: CloseLibrary(WhichLib : Byte);

Parameter: WhichLib must be the logical number of a library previously opened with OpenLibrary.

Notes: In addition to closing the library file (if StayOpen had been specified) this procedure
deallocates the memory occupied by the library header. See OpenLibrary.

Example: OpenLibrary(1,'screens.lib',true);
.
.
.
PobLib(1,'mainmenu');
.
.
.
PopLib(1,'EditScreen');
.
.
.
CloseLibrary(1);

 220 TOPAZ Technical Reference

__

CloseScreenGets procedure SCRENGET

Purpose: Releases all memory for all SAYWHAT?! data entry screens that have been previously loaded

Declaration: CloseScreenGets;

Notes: ClearScreenGets releases memory for a single SAYWHAT?! data entry screen.
CloseScreenGets releases memory for all data entry screens that have been allocated with
LoadScreenGets.

 TOPAZ Technical Reference 221

__

CMONTH function TIMEDATE

Purpose: Returns the month as a string for the specified date. Emulates the dBASE CMONTH()
function.

Declaration: CMONTH(Date : String10) : String10;

Parameter: Date is the date in either 'MM/DD/YY' or 'MM/DD/YYYY' format, if the date format is
American.

Notes: Returns "January ","February ".."December " padded with spaces to nine characters, if the
date format is American. Use SET_DATE or Set_Country_To to specify other date formats.

Example 1: WriteLn('Monthly Totals for '+ CMONTH(ReportDate));
{Output: "Monthly Totals for July"}

Example 2: SET_DATE(German);
WriteLn('Due first day of ',CMONTH(DueDate));
{Output: "Due first day of Juni"}

 222 TOPAZ Technical Reference

__

Commas function SAYGET4

Purpose: Returns bytes, words, integers, longints, and reals as formatted strings with commas.

Declaration: Commas(var Value;
 Typ : VarTypes;
 Width, Decimals : Byte) : String;

Parameters: Value is the numerical value to be converted. Typ is the variable type as follows:

_B : Byte
_I : Integer
_LI : LongInt
_SI : ShortInt
_R : Real
_W : Word

Width is the total number of characters in which to reformat the result. If Width is zero,
Commas returns the exact number of characters needed to represent the result. Decimals is
the number of decimal places desired in the result. If Decimals is zero, and Value is real,
Commas will return a whole number rounded to the nearest digit.

Example: { compare the way SInteger and Commas convert 1234567 to a string }

SInteger(1234567, 10) { returns " 1234567"}

i := 1234567; {i is a LongInt}
Commas(i, _LI, 10,0) { returns " 1,234,567"}

 TOPAZ Technical Reference 223

__

CommitDbf procedure DBF4

Purpose: Forces a directory update for the currently selected database.

Declaration: CommitDbf;

Notes: Same as FlushDBF but for use on networks (such as Novell and 3-COM) that do not support
the directory update function in FlushDBF or Set_Flush_On. Forces a directory update by
briefly closing and re-opening the currently selected database. Needed only after expanding
a file with Append since replacing a record does not expand the size of a file. See
SET_FLUSH_ON, FlushDBF.

Example: {Append 10 blank records to the file}
ClearRecord;
repeat until ALOCK;
for i := 1 to 10 do APPEND;
UNLOCK;
CommitDbf;

 224 TOPAZ Technical Reference

__

CONTINUE procedure TZUTILS

Purpose: Resumes a search of the currently selected database starting with the next physical record, for
the next record that satisfies the condition specified in the most recent call to the LOCATE
command.

Declaration: CONTINUE;

Notes: A call to LOCATE must precede any call to CONTINUE. See LOCATE. Positions the
database on the record of the match. If no match is found, the database is positioned beyond
end of file(i.e., the TOPAZ dEOF function will return True).

Example: Co := 'Acme Plating';
LOCATE('company', co);
while not dEOF do
 begin
 LIST('NEXT 1');
 CONTINUE;
 end;

 TOPAZ Technical Reference 225

__

CopyFile procedure DBF4

Purpose: Copies a DOS file to another file.

Declaration: CopyFile (SourceFile, DestinationFile : String);

Notes: This routine requires a minimum of 4096 bytes of free Heap memory; otherwise an error
(#217) is generated and your program will halt. Parameters are expected to be filenames and
no checking is done to see if one or the other is already open. Full path and extension (if any)
are required. Files may be of any type. There are no defaults assumed. The DestinationFile
will have the same DOS directory date and time stamp as the Source File.

Example 1: { copying a DBF file to backup file }
CopyFile('customer.dbf', 'customer.bak');

Example 2: { printing a text file: }
CopyFile('Notes.txt', 'PRN');

{ the above syntax is equivalent to the DOS command
COPY Notes.txt prn > NUL
but, be careful, there is no printer checking. }

 226 TOPAZ Technical Reference

__

CopyMemoFrom function MEMO

Purpose: Copies a memo from one database to the currently selected database.

Declaration: CopyMemoFrom(Area : Byte; MemoField : LongInt)
 : LongInt;

Parameters: Area is the work area of the file which contains the memo field to be copied. MemoField is
the value contained in the memo field to be copied.

Notes: Copying memo field data involves three steps:

1. locate the memo to be copied in the source memo file,
2. append a copy of that memo to the target memo file,
3. update the target file memo field with the proper memo file offset of the new memo field
just appended.
CopyMemoFrom does everything except the final writing to disk of the target file record.

In Multi-user systems the target database record must be locked.

Example: {copy the first ten records, with memo data, from one file to another}
SELECT(1);
USE('CLIENTS',@Clients,Sizeof(Clients)); { file with memo field}
CopyStruTo('TEMP.$$$');
SELECT(2);
USE('TEMP.$$$',@Temp,Sizeof(temp));
SELECT(1);
while RecNo < 11 do
 begin
 SELECT(2);
 Temp := Clients;
 Temp._Notes := CopyMemoFrom(1,Clients._Notes);
 REPLACE;
 SELECT(1);
 SKIP(1);
 end;

 TOPAZ Technical Reference 227

__

CopyStruFrom procedure VFILES

Purpose: Assigns a dBASE database structure to a Virtual File.

Declaration: CopyStruFrom (Area : Byte);

Parameter: Area is an open database area that contains a database record structure. Typically this is a disk
database file, but it could also be another Virtual File that has already been assigned a
structure.

Notes: Copying a structure from an existing database to a Virtual File allows you to access the fields
of the Virtual File using the "intermediate" TOPAZ commands (i.e. FieldNo, FieldAddress,
etc.). More importantly, it also allows you to use other TOPAZ features that rely on those
intermediate commands (e.g. Browse, EditRecord, etc.)

Both files must already be open (with a USE statement). When this command is executed, the
Virtual File to receive the structure must be selected as the current area.

Example: SELECT(1);
USE('customer',NIL,0);
SELECT(2);
USE('*list* VIRTUAL FILE', @list, SizeOf(list));
CopyStruFrom(1);

 228 TOPAZ Technical Reference

__

CopyStruTo procedure DBF4

Purpose: Creates a new, empty database with the same structure as the currently selected database.
Emulates the dBASE "COPY STRUCTURE TO" command.

Declaration: CopyStruTo(NewFileName : String);

Parameter: NewFileName is the filename with path of the empty dBASE file to be created. Extension not
required. ".DBF" will be added to any filename which does not contain a period.

Notes: See the section "Creating and modifying dBASE structures - CREATE.EXE" in the Tutorial
part of this manual. Cannot be used with files opened with low level commands.

See CopyTo.

Example: USE('Customer',@Customer,SizeOf(Customer));
CopyStruTo('TempCust');

 TOPAZ Technical Reference 229

__

CopyTo procedure DBF4

Purpose: Creates a new database with the same structure as the currently selected database and copies
records.

Declaration: CopyTo(NewFileName : String;
While_function : Pointer);

Parameter: NewFileName is the filename of the new dBASE datafile to be created (with default extension

of .DBF), and While_function is a pointer to a user-defined boolean function. This function
returns True for each record to be copied. Copying records will continue until the first time
the While_function returns False. If the while_func parameter is NIL, all records will be
copied.

Notes: The While_function must be declared FAR. If SET_DELETED_ON has been called, then all
deleted records will be ignored and not copied. If SET_FILTER_TO has been called. then all
records excluded by the filter will be ignored and not copied.

See SET_DELETED_ON/OFF, and CopyStruTo. Not compatible with low level commands.

Example 1: {copy all but deleted records from Customer.DBF to Newfile.DBF}
USE('Customer',@Customer,SizeOf(Customer));
SET_DELETED_ON;
CopyTo('NewFile',nil);

Example 2: {Copy all records from CUSTOMER.DBF with the numeric field _zip less
than 50000 to NEWFILE.DBF:}
{$F+}
function ZIPCodeOK;
begin
 ZIPCodeOK := customer._zip < 50000;
end;
{$F-}

{in the main body of the code, or a procedure:}
begin
 USE('Customer',@Customer,SizeOf(Customer));
 SET_INDEX_TO(@ZipKey, 'zip', 1);
 FindNear('50000');
 CopyTo('NewFile',@ZIPCodeOK);
 {while_function needs the database ordered on ZipCode (hence the
open index), and positioned on first record to be copied}
 CloseDataBases;
end.

 230 TOPAZ Technical Reference

__

CopyToMerge procedure DBF4

Purpose: Copies records from the currently selected database to a word processing secondary mail
merge file.

Declaration: CopyToMerge(Filename : PathStr;
WordProcessor : WordProcessorType;

CleanUpProc : Pointer);

Parameters: Filename is the name of the word processing secondary mail merge file to be created. If no
extension is specified, the extension .TXT is assumed. WordProcessorType is an enumerated
type with the following values:

(WordPerfectA,
 WordPerfectB,
 WordStar2000,
 WordStarClassic,
 WordStar60,
 LeadingEdge,
 MsWord,
 MsWorks,
 Excel,
 AmiPro)

WordPerfectA refers to the secondary files that can be read by WordPerfect 5.0 or earlier that
do not have field names, and WordPerfectB refers to secondary files that can be read by
WordPerfect 5.1 or later, and support field names. WordProcessor then specifies the format
of the secondary mail merge file to be written.

CleanUpProc is a pointer to a user-defined procedure that is called prior to writing each
record to the merge file. This procedure can be used to make the data more suitable for mail
merge (i.e.proper casing of names). Any modifications to the data fields made by
CleanUpProc will not affect the database.

Notes: CopyToMerge permits you to write programs that easily create mail merge files for several
of the popular word processor systems. CopyToMerge respects the primary index,
SET_FILTER_TO, and Set_While_To, if any. Records are copied starting from the current
record position. Records are copied until end-of-file or the end of the Set_While_To condition.
The record position will then be either past EOF or on the record just past the Set_While_To
condition. All fields are written to the secondary file in the order they appear in the DBF
structure.

 TOPAZ Technical Reference 231

Dates are written as MM/DD/YY (or in whatever date format is current in the TOPAZ
application), and Memo fields are written as "memo" for empty memo fields and "MEMO"
for non-empty memos. All fields will be TRIMmed.

Example 1: {generate a mail merge file for WordPerfect 5.1 of all customers to
MAILLIST.TXT:}

SelectAlias('customer');
GoTop;
CopyToMerge('maillist', WordPerfectB, NIL);

Example 2: {generate a mail merge file for WordStar 2000 called NOTICES.TXT for all
late paying customers:}

{$F+}
function LatePayers : Boolean;
begin
 LatePayers := customer._OVER90 > 0;
end;

begin
 SelectAlias('customer');
 SET_FILTER_TO(@LatePayers);
 GoTop;
 CopyToMerge('notices', WordStar2000, NIL);
 .
 .

Example 3: {generate a Wordperfect 5.1 merge file in proper case}

{$F+}
procedure CleanUp;
begin
 customer._LASTNAME := ProperCase(Customer,_LASTNAME);
 customer._FIRSTNAME := ProperCase(Customer,_FIRSTNAME);
end;
.
.
begin
 SelctAlias('customer');
 CopyToMerge('MailList', WordperfectB, @CleanUp);
end;

 232 TOPAZ Technical Reference

__

CopyToSDF procedure DBF4

Purpose: Copies records from the currently selected database to a Standard Data File (SDF).

Declaration: CopyToSDF(Filename: PathStr);

Parameter: Filename is the name of the SDF to be created. If no extension is given, an extension of.TXT
will be assumed. The optional clause DELIMITED may be added to Filename, causing a
single space to be inserted between fields in each record.

Notes: CopyToSDF respects the primary index, SET_FILTER _TO, and Set_While_To, if any.
Records are copied starting from the current record position. Records are copied until end-of-
file or the end of the Set_While_To condition. The record position will then be either past
EOF or on the record just past the Set_While_To condition.

An SDF file is an ASCII text file representing the data in a DBF file (less the first byte holding
the Deleted flag). There is no header, and each record is separated by a carriage return and
line feed (in either order). Normally, there are no delimiters or spaces between fields, but the
DELIMITED clause does permit this variation. The file ends with an end-of-file mark (^Z).
See AppendFromSDF.

Date fields are stored in SDF files as YYYYMMDD, unless the DELIMITED is specified.
Dates are then stored as MM/DD/YY (or in whatever date format is current in the TOPAZ
application). Memo fields are stored in SDF files as 10-digit numbers, unless the
DELIMITED clause is specified. Memo fields are then stored as "memo" for empty memo
fields and "MEMO" for non-empty memos.

Example 1: {copy all records from a DBF file to a SDF file called CUSTLIST.TXT:}
SelectAlias('customer');
GoTop;
CopyToSDF('custlist');

 TOPAZ Technical Reference 233

Example 2: {copy all records to a SDF file delimited by spaces:}
SelectAlias('customer DELIMITED');
GoTop;
CopyToSDF('custlist');

Example 3: {copy only California records to SDF file:}

{$F+}
function CaliforniaOnly : Boolean;
begin
 CaliforniaOnly := customer._STATE = 'CA';
end;

begin
 SelectAlias('customer');
 SET_FILTER_TO(@California Only);
 GoTop;
 CopyToSDF('custlist');
 .
 .

 234 TOPAZ Technical Reference

__

COUNT function TZUTILS

Purpose: Counts and returns the number of records in the currently selected database for which a match
exists between the specified field and specified matching condition.

Declaration: COUNT(FieldName : String; Var FieldValue) : LongInt;

Parameters: FieldName is the dBASE name of the field to be counted, and may contain the following
optional clauses:

NOCASE match is case insensitive
EXACT match must agree in both characters and length
CONTAINED match found anywhere in field

FieldValue is the data that when matched results in the record being COUNTed. Since
FieldValue is passed by reference, it cannot be a literal.

Notes: If the field to be COUNTed is a memo field, COUNT will automatically open and search
memos for the specified string, and ignores the clauses EXACT and CONTAINED. The
position of the record pointer is not changed by COUNT.

Example 1: St := 'Elm Street';
WriteLn('There are ',COUNT('address CONTAINED', St),

'Elm Streets in this file.');

Example 2: s := 'hot prospect';
i := COUNT('note', s); {NOTE is a memo field}
WriteLn('There are ',i, ' records that are hot prospects.');

 TOPAZ Technical Reference 235

__

CountOf function SAYGET4

Purpose: Determines the total number of times a particular character is found in a string.

Declaration: CountOf(C : Char; var S : String) : Byte;

Parameters: C is the character being counted in string S.

Notes: Since this function is case sensitive, when counting characters that have upper and lowercase
versions it is best to uppercase the target string before calling CountOf.

Example: { Count the number of occurrences of upper and lowercase A's in a
string:}
LastName := 'Abracadabra';
Total := CountOf('A',LastName);
{ Total will be set to 1 }

Total := CountOf('A',UPPER(LastName));
{ Total will be set to 5 }

 236 TOPAZ Technical Reference

__

CreateDBF procedure TZDBFLOW

Purpose: Low Level routine to create a DBF file from structure information in memory.

Declaration: CreateDBF(var R : DBFRecord; Fn : String64;
N : Integer; Flds: dFields);

Parameter: R is of type DBFRecord. Fn is the filename to be created. N is the number of fields per record.

Flds is a pointer to your field list array.

Notes: This is a low level TOPAZ command. For details see the section "Low Level Access to
dBASE files" in the Appendix of this manual. To create dBASE files from DOS, use
CREATE.EXE. The filename supplied to CreateDBF assumes an extension of DBF if an
extension is not supplied.

Example: var FieldList : ARRAY[1..128] of FieldRecord;
begin
 FillChar(FieldList,SizeOf(FieldList),0);
 { character field }
 FieldList[1].Name := 'OPERATOR'; { field Name }
 FieldList[1].Typ := 'C'; { field Type }
 FieldList[1].Len := 33; { field Width }
 { numeric field }
 FieldList[2].Name := 'ACCESS';
 FieldList[2].Typ := 'N';
 FieldList[2].Len := 5;
 FieldList[2].Dec := 0;
 CreateDBF(database, 'NEWDBF.DBF', 2, @FieldList);
end;

 TOPAZ Technical Reference 237

__

CreateMemoFile procedure MEMO

Purpose: Creates an empty memo file. Normally this command is not required and should only be used
under special circumstances such as recovering from accidently erasing a DBT file.

Declaration: CreateMemoFile(Filename : String);

Parameter: Filename is the database filename, with no extension.

Notes: Since both CREATE.EXE and the low-level routine CreateDBF will create memo files as
necessary, this procedure is provided simply to assist in disaster recovery. If
CreateMemoFile is used to recover from losing a .DBT file, the memo pointers in the .DBF
file will be reset to 0. CreateMemoFile creates an empty DBT file, but does not zero out the
memo pointers in the DBF file. Example 2 below will show you how to accomplish that. The
use of Poke will help make this scan of the DBF file as fast as possible.

Example 1: CreateMemoFile('customer');

Example 2: CreateMemoFile('mydata'); {restores the DBT file}
USE('mydata',nil,0); {now open the data file}
for i := 1 to RECCOUNT do {look at every record}
 for j := 1 to FieldCount do {check each field}
 if FieldType(j) = 'M' then {if its a memo field,}
 Poke(' 0',j,i); {clear it}

 238 TOPAZ Technical Reference

__

CreateMenu procedure VIDPOP

Purpose: This procedure allows you to put a moving bar menu on any screen regardless of its design
origin (SAYWHAT?! not required).

Declaration: CreateMenu(UpLtCol, UpLtRow, LowRtCol, LowRtRow,
Fg, Bg : Byte);

Parameters: The first four parameters (upper left column, upper left row, lower right column, lower right
row) are the coordinates that should define a rectangle or row anywhere on the screen and the
last two parameters specify the foreground and background colors of the highlight bar.

Notes: The moving bar menu will use whatever is on the screen (inside the defined area) as the
choices for the menu. You could display a list of filenames or other run-time choices on the
screen and then call this procedure to activate the menu. As with menus defined with
SAYWHAT?! and activated with PopScreen, the end-users choice will be returned in all three
variables: MenuChoice, MenuChar, MenuSeed, MenuKey, and MenuString. If the UpLtRow
coordinate is the same as the LowRtRow value, the menu will be a horizontal motion menu
(like Lotus 1-2-3 menus) and the highlighted bar will be sized according to the width of the
menu words.

As with menus created with SAYWHAT?!, horizontal motion menu items must be separated
by at least one space. With vertical motion menus, it is perfectly ok to have blank lines (rows)
in a menu area, the bar will simply jump over blank rows or rows which contain box parts.
The default trigger key for each menu choice is the first letter of the choice. The trigger letter
may be changed from the default by painting the desired trigger letter, or the background of
that letter, in a color different from the first character of the menu item.

See the section "Moving-Bar Menus" in the Tutorial part of this manual. See
Set_MenuHelp_To, PushMenu, PopMenu, Menu.

 TOPAZ Technical Reference 239

Example: procedure MainMenu;
begin
 At(10,10,'Add ');
 At(10,11,'Edit');
 At(10,12,'Quit');
 CreateMenu(9,10,14,12,Black,LightGray);
 Case MenuChar of
 'A' : AddRecord;
 'E' : EditRecord;
 'Q' : Halt;
 end;
end;

 240 TOPAZ Technical Reference

__

CTOD function TIMEDATE

Purpose: Converts a date to dBASE internal date format.

Declaration: CTOD(mDate : String10) : String10;

Parameter: mDate is a date in any of the permissible TOPAZ date formats.

Notes: dBASE stores dates in datafiles as YYYYMMDD. This function will convert a date in the
current TOPAZ date format (ANSI, American, German, etc.), with or without CENTURY
ON, into the dBASE internal standard, emulating the dBASE CTOD ("Character-To-Date")
routine. Useful for indexing, comparing two dates, or Pokeing data. Type String10 =
String[10] as defined in the TIMEDATE unit.

See DTOC, AnsiDate, Poke.

Example 1: {Poke the system date into the jth field of the ith record}
Poke(CTOD(SystemDate),j,i);

Example 2: {locating records with a given date}
for i := 1 to RecCount do

 if Peek(1,i) = CTOD('01/01/90') then ...

 TOPAZ Technical Reference 241

__

CurrentArea functionDBF4 ___

Purpose: Returns the number of the currently selected work area.

Declaration: CurrentArea : Byte;

Notes: Together with SELECT(0), CurrentArea can be useful for writing procedures and utilities

that require a dedicated work area for the duration of the procedure, where the work area can
be relinquished after the task is complete, and the former work area can be reselected. See
SELECT.

Example: PriorArea := CurrentArea;
SELECT(0);
USE('TempFile', @TempRec, SizeOf(TempRec));
While not dEOF do
begin
 {process data here}
 SKIP(1);
end;
USE('',Nil,0);
SELECT(PriorArea);

 242 TOPAZ Technical Reference

__

CurrentClock function CLOCK

Purpose: Returns the number of the currently selected clock.

Declaration: CurrentClock : Byte;

Notes: See SelectClock.

 TOPAZ Technical Reference 243

__

CurrentColors procedure SAYGET4

Purpose: The procedure CurrentColors is used to determine the values of the four colors, as set by the
most recent call to SET_COLOR_TO.

Declaration: CurrentColors(var SFg, SBg, GFg, GBg : Byte);

Parameters: SFg, SBg, GFg and GBg are returned with the values of the SAY foreground, SAY

background, GET foreground, and GET background colors respectively.

Notes: See SET_COLOR_TO, AT, SayGet, PushColors, PopColors.

Example: CurrentColors(a,b,c,d); {Save current colors}
SET_COLOR_TO(red, blue, green, black);
At(1,1,'This remark is in special colors');
SET_COLOR_TO(a,b,c,d); {Restore the prior colors}

NOTE: This example could be replaced by the use of PushColors and PopColors:

PushColors;
SET_COLOR_TO(red, blue, green, black);
At(1,1,'This remark is in special colors');
PopColors;

 244 TOPAZ Technical Reference

__

CurrentFKey function SAYGET4

Purpose: Returns the pointer of the current FKey setting.

Declaration: CurrentFKey(Key : Char) : Pointer;

Parameter: Key specifies the keystroke that the returned pointer is assigned to.

Notes: The routine Set_FKey permits you to attach your own procedures to keystrokes that are active
during a SayGet..ReadGets data entry session. Once in a validation routine, however, you
may wish to deactivate these keys, or temporarily un-assign them. Calling CurrentFKey lets
you save and restore these pointers.

Example: procedure CheckID; {validation procedure for a SayGet..ReadGets
session}

var SaveF1 : Pointer;
begin
 SaveF1 := CurrentFKey(F1); {saves F1 pointer}
 Set_FKey(F1, NIL); {so we can disable it for now}
 .
 . {work of validation routine goes here}
 .
 Set_FKey(F1, SaveF1); {restores F1 pointer}
end;

 TOPAZ Technical Reference 245

__

CurrentMemory function VFILES

Purpose: Determines which kind of memory is being used by the currently selected Virtual File.

Declaration: CurrentMemory : String;

Notes: This function returns a string ('EMS', 'EXT', 'HEAP', or 'DISK') that indicates what kind of
memory is being used for the currently selected work area. See AvailableMemory,
RequiredMemory.

Example: {determine if there is enough memory left to add another record}
if SizeOf (MyData) <= AvailableMemory (CurrentMemory) then
 APPEND
else ... {not enough memory, do something else}

 246 TOPAZ Technical Reference

__

CurrentOrder function INDEX4

Purpose: Returns the order of the primary index for the currently selected work area.

Declaration: CurrentOrder : Byte;

Notes: A database file can have up to 16 active indexes. These indexes are given an order number
when they are opened (see SET_INDEX_TO). By default, index 1 is the primary index, but
SET_ORDER_TO can be used to designate any of the other indexes as primary. The
CurrentOrder function can be used by the programmer to establish which index is currently
the primary index. An error will be generated if no database is open in the selected area.
CurrentOrder returns 0 if no indexes are open.

Example: USE('customer', @customer, SizeOf(customer));
SET_INDEX_TO(@CustID, 'custID', 1);
SET_INDEX_TO(@CustName, 'custname', 2);
{CurrentOrder returns 1}
.
.
SET_ORDER_TO(2);
.
.
{CurrentOrder returns 2}
.
.
CloseIndexes;
{CurrentOrder returns 0}

 TOPAZ Technical Reference 247

__

CursorVisible function SAYGET4

Purpose: Returns True if the cursor is visible. Returns false if the cursor has been hidden by either
setting the cursor scan lines to illegal values, or by positioning the cursor off the screen.

Declaration: CursorVisible : Boolean;

Notes: In certain instances, you will want to set the cursor on or off in a particular routine, and restore
the cursor status on exit from the routine. CursorVisible allows the program to know the
status of the cursor on entry to the routine. See Set_Cursor_On/Off. Set_Cursor_Size.

Example: CursorWasVisible := CursorVisible;
if CursorVisible then SET_CURSOR_OFF;
.
.
.
if CursorWasVisible then SET_CURSOR_ON;

 248 TOPAZ Technical Reference

__

CYEAR function TIMEDATE

Purpose: Returns the year as a string from a date variable.

Declaration: CYEAR(Date : String10) : String4;

Parameter: Date may be expressed as either 'MM/DD/YY' or 'MM/DD/YYYY', if date format is

American.

Notes: CYEAR will be a 2- or 4-character string as appropriate. See SET_DATE for other date
formats.

Example: s := CYEAR('07/04/76'); {sets s to '76'}
s := CYEAR('07/04/1776'); {sets s to '1776'}

 TOPAZ Technical Reference 249

__

DateDiff function TIMEDATE

Purpose: Returns the number of days between two dates.

Declaration: DateDiff(Date1, Date2 : String10) : LongInt;

Parameter: Date1 and Date2 are two dates. DateDiff computes the number of days from Date2 to Date1.
Thus, DateDiff will return a positive result if Date1 is later than Date2, and will return a
negative result if Date1 is earlier than Date2. If Date1=Date2, then DateDiff returns zero.

Notes: Dates passed to DateDiff must be valid dates. Use the ValidDate function if necessary to
establish whether the passed dates are valid. Dates returned by TOPAZ functions, or validated
during ReadGets, are guaranteed to be valid. See ValidDate, DatePlus. See SET_DATE and
Set_Country_To for a list of available date formats.

Examples: At(1,1,'Number of days till Christmas is '+
SInteger(DateDiff('12/25/90', SystemDate),0));

{no date validation is necessary, as SystemDate is a TOPAZ date function
and guaranteed to be valid}

if ValidDate(Easter) and ValidDate(July4th) then
 DaysBetween := Abs(DateDiff(Easter, July4th));

If the vars Easter and July4th are defined in such a way as to be possibly invalid dates, they
should be checked before passing them to DateDiff.

 250 TOPAZ Technical Reference

__

DateFrom function TIMEDATE

Purpose: Returns a date given a numerical year, month, and day.

Declaration: DateFrom(Year, Month, Day : Word) : String10;

Parameter: Year may be a number from 0 to 99 (i.e., without the century), or a number from 100 to 9999
(with the century).

Notes: See SET_DATE for a list of available date formats.

Example: x := DateFrom(88, 12, 5); {sets x to '12/05/88'}
x := DateFrom(1776, 7, 4); {sets x to '07/04/1776'}

__

DateFromJulian function TIMEDATE

Purpose: Returns a TOPAZ date string from a Julian date.

Declaration: DateFromJulian(Julian : LongInt) : String10;

Parameter: Julian is a Julian date.

Notes: The date returned is in the current TOPAZ date format. An error (invalid parameter) is
generated if Julian is invalid. January 1 of year 1 A.D. is the Julian Day 1,721,424.st

Although TOPAZ provides a full range of date math routines that do not require the
programmer to convert to or from Julian representations, applications may be optimized in
disk space and speed by storing dates as Julian LongInts. This function facilitates that
capability.

See JulianFromDate.

 TOPAZ Technical Reference 251

__

DatePlus function TIMEDATE

Purpose: Returns a date a specified number of days from a given date. Use DatePlus to add or subtract
days from a date to arrive at a new date.

Declaration: DatePlus(Date : String10; N : Integer) : String10;

Parameter: Date is the starting date. N is the number of days to add or, if negative, to subtract from date.

Notes: See DateDiff. See SET_DATE for a list of available date formats.

Example: At(7,6,'90 days from today it will be ' +
DatePlus(SystemDate,90));

 252 TOPAZ Technical Reference

__

DAY function TIMEDATE

Purpose: Returns the numeric day of the month given a specified date.

Declaration: DAY(Date : String10) : Byte;

Parameter: Date is in MM/DD/YY format, if date format is American.

Notes: Range returned is 1..31. See SET_DATE for a list of available data formats. See CDAY.

Example: WriteLn('Christmas falls on the ',DAY('12/25/88'), 'th Day of
the month');

if DAY(SystemDate) = 15 then RunPayroll;

__

DaysInMonth function TIMEDATE

Purpose: Returns the maximum number of days in the month and year specified in parameter.

Declaration: DaysInMonth(mDate : String10) : Byte;

Example: var LastDay : Byte;
begin
 LastDay := DaysInMonth('02/01/91');
end;

{LastDay will be set to 28}

 TOPAZ Technical Reference 253

__

DBF function DBF4

Purpose: Returns the name, including the path, of the currently selected database. Emulates the DBF()
function in dBASE.

Declaration: DBF : String;

Notes: DBF returns the fully qualified filename of the currently selected database, whether or not the
path or drive was specified when the file was opened. If you only need the filename (without
extension), use the ALIAS function. See the example below, and ALIAS.

Example: SELECT(1);
WriteLn('Database in use is ', DBF);
{output: "Database in use is C:\TOPAZ\GRADES.DBF"}
{if you only need the name of the database, use the ALIAS function
instead:}

SELECT(1);
WriteLn('Database is use is ', ALIAS);
{output: "Database in use is GRADES"}

 254 TOPAZ Technical Reference

__

dBOF function DBF4

Purpose: Returns True when an attempt has been made to position the currently selected database
before the beginning of file.

Declaration: dBOF : Boolean;

Notes: When an index is active, dBOF refers to the beginning of the ordered file. This emulates the
BOF() function in dBASE. When BOF is reached, the file will be positioned at the first
record. Unlike end-of-file, you will not (and cannot) be positioned above beginning of file.
If no database is open in the currently selected work area then Error # 215 will be generated.
See dEOF, SELECT.

Example: GoTop;
SKIP(-1);
WriteLn(dBOF);
{output: "True"}

 TOPAZ Technical Reference 255

__

Deleted function DBF4

Purpose: Returns True if the current record in the currently selected database is deleted. False
otherwise.

Declaration: Deleted : Boolean;

Notes: If no database is currently selected, calling the function Deleted will generate Error # 215. See
DeleteRec, RecallRec.

Example: {output a list of deleted records in a database:}
USE('customer', @customer, SizeOf(Customer));
while not dEOF do
begin
 if Deleted then WriteLn('Record ',RecNo, is deleted!');
 SKIP(1);
end;

 256 TOPAZ Technical Reference

__

DeleteRec procedure DBF4

Purpose: Marks current record in currently selected DBF for deletion.

Declaration: DeleteRec;

Notes: Concurrently updates the user record and only writes the "delete" byte to the DBF record on

disk. Same as DELETE in dBASE. As in dBASE, REPLACE is not required after a call to
DeleteRec. See RecallRec, Deleted.

Example: {Open the 'customer' database, delete record number 10, and PACK the
file.}
USE('customer', @customer, SizeOf(customer));
GO(10);
DeleteRec;
PACK;

 TOPAZ Technical Reference 257

__

dEOF function DBF4

Purpose: Returns True when an attempt has been made to position the currently selected database past
the end of the file.

Declaration: dEOF : Boolean;

Notes: When an index is active, dEOF refers to the last record in indexed order. If dEOF returns
True, then RecNo will be RecCount + 1, and the record will be blank (empty of data). This
emulates the EOF() function in dBASE. See dBOF.

Example: USE('customer', @customer, SizeOf(customer));
while Not dEOF Do
 begin
 WriteLn(Customer._Last_Name);
 SKIP(1);
 end;

 258 TOPAZ Technical Reference

__

DialogBox function DIALOG

Purpose: Draws a box in the center of the screen display with a specified message or prompt, either
centered or left-justified, and waits for the end-user to press any of the allowed response keys.
Returns the upper case value of the key pressed and restores the screen display.

Declaration: DialogBox(Message : String; WaitFor : String) : Char;

Parameters: Message is a string specified by the programmer and may contain special clauses and attribute

instructions. WaitFor is a list of keys that DialogBox will wait for before returning, or a
description of selection buttons, or special predefined constants.

Notes: Multiple lines of text can be specified by using the semicolon (";") as a separator. By default,
multiple line messages are stacked in the box, and left justified. The clause CENTERTEXT
can be added to the end of the Message parameter to cause multiple line messages to be
centered in the Dialog box. The clause TIMEOUT will cause DialogBox to return
automatically, when the TIMEOUT number of seconds has elapsed with no keyboard activity.
DialogBox will return an empty string when a Timeout occurs (see Example 7).

DialogBox supports combinations of attributes for words or phrases in your dialog message.
By framing portions of your message with the special reserved bytes shown below, the
message will appear with mixed attributes.

Bright 1
Dim 2
Highlight 3
Flash 4
Reverse 5
EndFrame 0

See Example 8 below.

Setting WaitFor to the empty string will cause DialogBox to wait for any key. The case of
characters specified in WaitFor is ignored. Dialog boxes can be specified to not wait for a
keystroke and remain on the screen, by setting WaitFor to #0 (or the predefined constant
StayOn). The programmer can then continue processing. A subsequent call to DialogBox,
or a call to RemoveDialogBox will call the screen to be restored. If the DialogBox is to stay
on the screen, and the cursor is to not show, WaitFor can be set to #1 (or the predefined
constant StayOnNoCursor). Subsequent calls to DialogBox will cause a StayOn box to be
removed. Calling RemoveDialogBox with no box displayed will have no effect, and is not an
error.

 TOPAZ Technical Reference 259

Unlike the behavior caused by the StayOn or StayOnNoCursor flags, when a dialog box is
told to stay on the screen with StayOnUntilRemoved, subsequent calls to DialogBox will not
cause it to disappear. Only a call to RemoveDialogBox will remove it from the screen. Thus
if you want to have a dialog box stay on during processing and survive the display and
removal of a subsequent dialog box, use the StayOnUntilRemoved flag.

In addition to StayOn and StayOnUntilRemoved DialogBox also supports three additional
predefined constants:

PressAnyKey (#2) - Causes the phrase "Press any key..." to appear centered on the bottom line
of the box.

BlinkPressAnyKey(#4) - As above, but blinking.

ScrollPressAnyKey(#3) - As above, but scrolls right to left.

See Example 9 for typical usage of these predefined constants.

A call to DialogBox sets the value of two global bytes, DialogCol and DialogRow. These are
the values of the screen coordinates of the upper left corner of the DialogBox. This permits
the combined use of DialogBox and SayGet, as shown in Example 6 below, where a
DialogBox is used to prompt for a filename. Notice the semicolon in the DialogBox message
forcing the box to be drawn with an extra blank row. This extra row is necessary to put the
SayGet data entry field.

DialogBox supports button choices. The syntax is very simple and flexible:

Response := DialogBox('Buttons are better, right?',
 'BUTTONS=Yes No Maybe');

Notice that we have used the second parameter not to supply a list of permissible response
characters (such as 'ynm'), but to specify that we want buttons, and what the buttons should
say. When the DialogBox runs, a row will be reserved for a list of horizontally laid out
buttons. The highlighted button will have a shadow that is made of 1/2 block characters. The
cursor keys will move the shadow and highlight each choice, just like a moving-bar menu
would. In addition <Tab> and <Shift-Tab> move forwards and backwards through the choices,
and the <Space-Bar> cycles through the choices. Pressing <Enter> on choice, or the first letter of
the choice, will cause DialogBox to return the first letter of the choice (in uppercase). If the
user presses <Esc>, DialogBox will return #27. The color of the buttons is set by a call to
Set_Button_Color_To (see page 487), and permits you to specify the colors of the highlighted
and un-highlighted buttons. If you would like to create button choices made up of more than
one word, simply separate the words that are to be grouped together with #255 instead of
blanks. If you would like the buttons to behave exactly like a moving-bar menu (i.e., without
shadows), you can set the global boolean FancyButtons to False.

The global byte ButtonSpacing specifies the number of additional spaces to go to the left and
right of buttons. Its default value is zero (most common button spacing). If you want the
buttons spaced more widely you can set this byte to a finite number. See

 260 TOPAZ Technical Reference

Set_DialogWindow_To, Set_Dialog_Color_To, RemoveDialogBox, and the section on
Dialog Boxes in the Tutorial part of this manual.

Example 1: {prompt for a y/n response}
if DialogBox('Overwrite the file? ', 'yn') ='Y' then ...

Example 2: {Variation on Example 1: Here, we put the filename as a variable in the
string. Also note that not only are Y and N accepted, but also carriage
return (#13) and escape (#27).}

if DialogBox('Overwrite file '+ filename+'?', 'yn'#13#27) <>'Y' then Exit else ...

Example 3: {Use of multiple lines of text, left justified}
if DialogBox('You have requested writing a file;'+

'This will overwrite the old file;OK? ','yn');

Example 4: {Multiple lines of text, centered. Waits for any key.}
if DialogBox('Your fate;Dear Brutus;'+

'Lies not in the stars CENTERTEXT','');

Example 5: {Post a message, and then go off processing data. When done, remove the
message.}
c := DialogBox('Processing data left and right;'+

'Please wait', StayOn);
.
.
RemoveDialogBox;

Example 6: DialogBox('Enter a DOS filename below:;', StayOnNoCursor);
SayGet(DialogCol+2, DialogRow+2, '', Filename, _S, 12, 0);
ReadGets;
RemoveDialogBox;

Example 7: DialogBox('Processing is complete. TIMEOUT=5', '');
{Displays message for 5 seconds or until a key is pressed,
whichever occurs first}

Example 8: DialogBox('If I told you once, I told you 1000 times,;'+
Flash + 'Insert the floppy disk; now'+ EndFrame, '');

Example 9: DialogBox('Waiting for paper to be loaded into printer.',
ScrollPressAnyKey);

{causes message to appear with "Press Any Key..." on the bottom line of the box, continuously
scrolling from right left to right}

Example 10: Response := DialogBox('Buttons are better, right?',
 'BUTTONS=Yes No Maybe');

 TOPAZ Technical Reference 261

__

Different function DBF4

Purpose: Compares any two data structures of the same size, returning True if the data differs, False
otherwise.

Declaration: Different(var A, B; Size: Word);

Parameters: A and B are any two data elements (vars or records) of the same size, and Size is the number
of bytes in either A or B.

Notes: Different can be used in a data entry application to determine if the end-user changed any of

the bytes in the data record. See example 1. Different is also important in multi-user
applications, where you should check to see if a record was modified by another user. See
example 2.

Example 1: USE('customer', @customer, SizeOf(customer));
.
.
OrigCustomer := Customer; {save a copy of the record before editing}

SayGet(5,5,'Last Name: ', customer._LASTNAME, _S, 20, 0);
SayGet(5,6,'First Name: ',customer._FIRSTNAME, _S, 10,0);
.
.
ReadGets;
{if something changed, then bother with the disk I/O}
if Different(customer, OrigCustomer, SizeOf(customer)) then
 REPLACE;

Example 2: OrigCustomer := Customer; {save a copy of the record}
.
. {other activities occur}
.
SKIP(0); {read in a fresh copy of the record}
if Different(Customer, OrigCustomer, SizeOf(customer)) then
 DialogBox('Another user has modified this record','');

 262 TOPAZ Technical Reference

__

DisableMouse procedure TZCOMMON

Purpose: Turns off Mouse sensitivity and disposes of the current Mouse target list.

Declaration: DisableMouse;

Notes: DisableMouse is the complement of EnableMouse. EnableMouse activates the current list
of Mouse targets and allows the generation of "events" when one of the Mouse targets is hit.
On the other hand, DisableMouse disposes of the current Mouse target list and temporarily
deactivates the Mouse driver. After a call to DisableMouse, no Mouse events will occur until
EnableMouse is called again.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call EnableMouse and DisableMouse since TOPAZ automatically calls them when
appropriate.

Example: {create two "buttons", wait for a left-button release on one of them,
and act accordingly}

var e : EventRec;

begin
 At(5,5,'OK');
 At(10,5,'Cancel');
 AddTarget(5,5, 7,5, 1, LeftButtonReleased);
 AddTarget(10,5,15,5, 2, LeftButtonReleased);
 EnableMouse;
 GetEvent(e);
 case e.WhichEvent of
 Keyboard :; {not interested in keystrokes here}
 Mouse : case e.TargetID of

 1 : At(1,20,'You pressed OK');
 2 : At(1,20,'You pressed Cancel');

 end;
 end;
 DisableMouse;
end.

 TOPAZ Technical Reference 263

__

DisplayCalendar procedure TIMEDATE

Purpose: Displays a static one-month calendar.

Declaration: DisplayCalendar(DateString : String);

Parameters: DateString should be a valid date. A missing or invalid date will result in DisplayCalendar

using the DOS System date. The optional clause PLAIN may be added to DateString. This
causes the calendar to display month and year on the top line of the calendar, and suppress
the "day of year display".

Notes: The month calendar will display at the location specified by Set_Calendar_To. The date
specified by DateString will be highlighted.

See Set_Calendar_To, SelectDate

Example 1: { Display a calendar showing the date 30 days from today }
DisplayCalendar(DatePlus(SystemDate,30));

Example 2: DisplayCalendar('03/11/90 PLAIN');

{ results in: }

+)))))))))))))))))))))))))))))),
* Sunday March 11, 1990 *
* S M T W T F S *
* 1 2 3 *
* 4 5 6 7 8 9 10 *
* 11 12 13 14 15 16 17 *
* 18 19 20 21 22 23 24 *
* 25 26 27 28 29 30 31 *
* *
* Day of Year : 70 *
.))))))))))))))))))))))))))))))-

 264 TOPAZ Technical Reference

__

DisplayMemo procedure MEMO

Purpose: Displays the contents of a memo field for the current record of the currently selected database
file.

Declaration: DisplayMemo(MemoField : LongInt);

Parameter: MemoField is the memo "pointer" for any of the memo fields belonging to the currently
selected database.

Notes: DisplayMemo is intended only to display a Memo on the screen, and therefore has no editing
or scrolling capability. Memos are displayed in the window set by
Set_MemoDisplayWindow_To and Set_MemoWindow_To,
with the colors set by Set_Color_To and Set_Memo_Color_To, and are automatically word
wrapped to the width of the window.

DisplayMemo can not be redirected to another device. See PrintMemo and SendMemo for
routines which allow to send a memo to a printer or any alternate device.

Example: {set the display window, go to the first record in the CALLS.DBF
database file, and display the memo associated with the memo field
_NOTES}

Set_MemoDisplayWindow_To(5,5,65,20,SingleLine,'');
GoTop;
DisplayMemo(calls._NOTES);

 TOPAZ Technical Reference 265

__

DisplayPage procedure VIDPOP

Purpose: Companion to the FillPage procedure, restores a screen previously stored in the buffer pointed
to by the parameter PagePtr.

Declaration: DisplayPage(PagePtr : Pointer);

Notes: No checking is done to determine if any image was in fact stored at this location in memory
nor that the buffer is the correct size. Screens are always restored to video page 0 (zero). See
FillPage, PushWindow, PopWindow, FillWindow, DisplayWindow.

Example: See FillPage.

 266 TOPAZ Technical Reference

__

DisplayStatus procedure DBF4

Purpose: Displays a list of open databases, indexes, keylengths, aliases, and current values of global
settings shown below.

Declaration: DisplayStatus;

Notes: This emulates the dBASE DISPLAY STATUS command, and is for debugging purposes. It
would rarely be called in the final version of a program. DisplayStatus will direct its output
to the TOPAZ "alternate" device. If no alternate device has been specified, data is displayed
on the screen. Otherwise, SET_ALTERNATE_ON, SET_PRINT_ON, and
SET_CONSOLE_ON, will cause output to appear at the appropriate device. If a Pascal
window is active, the output of DisplayStatus will be confined to the window. If memory is
available, DisplayStatus will save the screen prior to its own listing, and will restore the
screen when finished. If DisplayStatus requires more than one screen, display will be paused
and the user will be prompted for a keystroke. Pressing <Esc> will cause DisplayStatus to
exit.

Example: USE('clients',@clients,sizeOf(clients));
SELECT(2);
USE('vendors',@vendors,sizeOf(vendors));
SET_ALIAS_TO('suppliers');
GO(17);
DisplayStatus;

{Produces the following report to the monitor:}

 Workarea: 1 Database in use: C:\TOPAZ\CLIENTS.DBF
 Alias: CLIENTS Record number: 1 of 19
 DOS File Handle: 5 File Mode: 2 [Read/Write (non-sharable)]
 Memo file: C:\TOPAZ\CLIENTS.DBT
 Filter procedure active
 Database is related to one or more child databases

Currently selected work area: 2
 Workarea: 2 Database in use: C:\TOPAZ\VENDORS.DBF
 Alias: VENDORS Record number: 1 of 12
 DOS File Handle: 6 File Mode: 2 [Read/Write (non-sharable)]
 Memo file: C:\TOPAZ\VENDORS.DBT

Memory Available = 433994
Console= OFF Talk = OFF Deleted= OFF
Safety = OFF Flush = OFF Print = OFF
Alternate = ON Alternate file = JAN.TXX
Filemode = 2
Total DBF, IND, and Alternate files open = 5

 TOPAZ Technical Reference 267

__

DisplayWindow procedure VIDPOP

Purpose: Displays a saved window (as saved by the FillWindow procedure) at the coordinates it was
saved from and all heap space used to store the screen is recovered.

Declaration: DisplayWindow(var W : WindowRec);

Parameter: W must be a record of type WindowRec as shown in the example for FillWindow().

Notes: Pascal Window() coordinates are NOT reset. Windows may be re-positioned by calling
Set_Position_To just before DisplayWindow.

Warning: Calling DisplayWindow with an un-initialized parameter will result in
unpredictable behavior.

If the WindowRec passed to FillWindow is declared locally to a procedure or function, DO
NOT exit the procedure before calling DisplayWindow, otherwise the memory allocated for
the saved window will be unavailable until your program returns to DOS.

Example: See FillWindow.

 268 TOPAZ Technical Reference

__

DoScreenGets procedure SCRENGET

Purpose: Initiates a data entry session on fields embedded in a SAYWHAT?! data entry screen.

Declaration: DoScreenGets(ScreenName : String10;
ScreenMode : ScreenGetMode;
UserCallBack : Pointer);

Parameters: ScreenName identifies the SAYWHAT?! data entry screen. Typically, it is the name of the
SQZ file that is to be displayed, and must match the ScreenName specified in the required
prior call to LoadScreenGets.

ScreenMode identifies the action that is to take place. If ScreenMode is either AddMode or
EditMode then data fields are displayed and user will be allowed to edit those fields. If
ScreenMode is set to DisplayMode, then data fields are displayed and control returns
immediately to the calling procedure.

UserCallBack is a pointer to a user-defined procedure that will be called for each data entry
field, allowing your program to specify validation and autohelp routines. The global pointer
DataDefinition will point to a record that identifies the field. When your call-back routine is
called, the DataDefinition record will be set to:

DataDefinition^.DBFAlias := DBFAlias;
DataDefinition^.FieldName := FieldName;
DataDefinition^.Row := Row;
DataDefinition^.Column := Column;

(all other fields in the record will be empty). The user callback routine would then typically
use the DBF Alias and FieldName (trimmed and uppercased) to identify the data field, and
then set the following fields in DataDefinition^ as appropriate:

AutoHelpPtr (Pointer to your autohelp routine)
ValidatePtr (Pointer to your Validation routine)
NoEdit (Boolean)
BlankField (Boolean)
Required (Boolean)
Picture (String PICTURE clause)
LoRange (String low range clause)
HiRange (String high range clause)

Notes: DoScreenGets assumes that a prior call to LoadScreenGets has been made, and that the
SAYWHAT?! screen has been displayed. DoScreenGets is actually a "super
SayGet/ReadGets" session that can display and edit the field data. It is up to your program to

 TOPAZ Technical Reference 269

decide whether to REPLACE or APPEND data after the call, and to release memory with a call
to ClearScreenGets.

Example: {assumes CUSTOMER.DBF file is open and the CUSTOMER.SQZ screen file
contains references to fields in CUSTOMER.DBF}

procedure FieldInformation; {allows us to specify SayGet "modifiers"
for each field}

begin
 with DataDefinition^ do
 begin
 if FieldName = 'CUSTNAME' then NoEdit := True;
 if FieldName = 'ZIP' then Set_Validate_To(@CheckZIP);
 end;
end;

{Reserve memory to hold data entry field information embedded in the
SAYWHAT?! screen file CUSTOMER.SQZ:}
LoadScreenGets('CUSTOMER',Nil,0);

{Display the SAYWHAT?! screen:}
PopScreen('CUSTOMER');

{Edit the data entry fields contained in the screen:}
DoScreenGets('CUSTOMER', EditMode, @FieldInformation);

{Write results to disk:}
Replace;

{Clear memory holding data entry field information}
ClearScreenGets('CUSTOMER');

 270 TOPAZ Technical Reference

__

Dollars function TZUTILS

Purpose: Returns a real number as a written English string.

Declaration: Dollars(Amount : Real) : String;

Parameter: Amount is the real number to be converted to an English string.

Notes: The Dollars function is intended for use with check writing programs or similar applications
where dollar amounts must be written out. Amount must be less than $999,999,999.99 and
cannot be negative. The string returned will be in proper case.

Example: CheckAmount := 1234.56;
WriteLn(Dollars(CheckAmount));
{displays "One Thousand Two Hundred Thirty Four and 56/100"}

 TOPAZ Technical Reference 271

__

DOW function TIMEDATE

Purpose: Returns the numeric day of the week from a specified date.

Declaration: DOW(Date : String10) : Byte;

Parameter: Date is in MM/DD/YY format, if date format is American.

Notes: Sunday = 1, Monday = 2, .. Saturday = 7. See SET_DATE for a list of available date formats.
See CDOW to return the actual day names.

Example: WriteLn('Day of the week is ',DOW(SystemDate));
{for instance, output: 3}

 272 TOPAZ Technical Reference

__

DriveIsRemote function DBF4

Purpose: Determines if the specified drive designation represents a network (remote) device.

Declaration: DriveIsRemote(Drive : Byte) : Boolean;

Notes: The DriveIsRemote function is used to determine if a drive is local (on the current work
station) or remote (on a server). If the drive you wish to open a file on is local to the work-
station then it should be opened EXCLUSIVE. The Drive parameter may have a value
between 0 and 26 which have the following meanings:

0 = default drive
1 = drive A
2 = drive B
3 = drive C
4 = drive D
etc.

Example 1: if DriveIsRemote(0) then
 Set_Exclusive_Off { Remote drive }
else
 Set_Exclusive_On; { Local drive }

On some networks it is possible to run applications on a server. In these situations the network
drive (a shared drive) will also be a local drive, and it is recommended to use the code, as
shown in Example 2, to properly set TOPAZ Multi-User variable.

Example 2: {if the current drive is local and is not a shared drive then we need to
turn the multi-user features off }

if TzCommon.MultiUser and Not DriveIsRemote(0) then
 TzCommon.MultiUser := DialogBox('Is this program running on

a network server? [Y/N] ','yn') = 'Y';

 TOPAZ Technical Reference 273

__

DTOC function TIMEDATE

Purpose: Converts a date in dBASE internal date format to a TOPAZ date in the currently specified date
format.

Declaration: DTOC(mDate : String10) : String10;

Parameter: mDate is a date in dBASE internal format.

Notes: dBASE stores dates in data files as YYYYMMDD. This function will convert this date to any
of the currently active TOPAZ date formats (ANSI, American, German, etc.), respecting the
CENTURY setting. This function emulates the dBASE DTOC ("Date-To-Character") routine.
Useful when Peeking or Searching.

See CTOD, Peek.

Example: {using Peek to locate records having a given date:}
for i := 1 to RecCount do

 if DTOC(Peek(1,i)) = '01/01/90' then ...

 274 TOPAZ Technical Reference

__

EDIT procedure DBFEDIT

Purpose: Enters a full-screen mode to edit the fields of the current record in the currently selected
database file, allowing the end-user to scroll forward and back to other records in the file. Data
is listed vertically, one record at a time.

Declaration: EDIT(Command : String);

Parameter: Command is a string which currently accepts a PLAIN clause.

Notes: Unlike the dBASE EDIT command, EDIT can be windowed. See Set_EditWindow_To. The
colors of the edit window are those currently in effect from the most recent call to
SET_COLOR_TO. EDIT handles REPLACEing existing records to disk. To APPEND new
records, see EditRecord.

Example: USE('customer', @customer, SizeOf(customer));
EDIT('');

 TOPAZ Technical Reference 275

__

EditMemo procedure MEMO

Purpose: Invokes the TOPAZ text editor, permitting the end-user to create and edit text memos for the
specified memo field in the current record of the currently selected database.

Declaration: EditMemo(MemoField : LongInt; Clauses : String);

Parameters: MemoField is the memo "pointer" for any of the memo fields belonging to the currently
selected database. The clauses parameter permits the programmer to pass any of the following
phrases to the editor, configuring its behavior:

FULLSCREEN Causes the current editor window setting to be reset to the maximum
window size possible, with no frame.

NOEDIT Permits viewing of the file or memo including scrolling, but inhibits the
end-user from making any changes to the file.

NOSTATUS Inhibits display of status information on the top row.

NORESIZE Inhibits the end-user from moving or re-sizing (growing or shrinking)
the editing window.

NORESTORE Normally the editor saves the underlying screen and restores it after the
edit session is complete. This clause inhibits this feature.

RULER Causes a "ruler" to be displayed on the bottom row of the editor window.

WRAP Turns word wrapping on. The word wrap length is the width of the
editing window.

WRAP = <n> Sets the wrap width to n columns.

 276 TOPAZ Technical Reference

PLAIN This is equivalent to NOEDIT. PLAIN does not inhibit resizing.

SHOW Displays as much of the memo in the current window as is possible and
returns control to the calling program. This is equivalent to
DisplayMemo, except that DisplayMemo may have a different window
specified by Set_MemoDisplayWindow_To.

Notes: Clauses may be in upper, lower, and mixed case, and combined although they must be
separated by a space. The memo editing window is set by calling Set_MemoWindow_To, and
the color attributes are determined by the most recent call to the procedure
Set_Memo_Color_To.

Memos may also be edited with SayGet, EDIT, EditRecord, and BROWSE by pressing <Ctrl-
Home> when the cursor is on a memo field (as shown by the word "memo" or "MEMO"), and
<Ctrl-End> to finish editing. Clauses may also be used in PICTURE calls following SayGets on
memo fields.

EditorResult is set at the end of all EditMemo calls and indicates the manner in which the
memo-editing session was exited:

EditorResult = 0 nothing happened, no changes, no saves, no abandonment
EditorResult = 1 memo changes were abandoned
EditorResult = 2 memo changes were saved
EditorResult = 3 file or memo made empty (zapped) and saved

Refer to the section "Text Editor and Editor Commands" in the Tutorial part of this manual
for full information on the operation of the text editor.

Example 1: {set the editing window, go to the first record in the CALLS.DBF
database file, and edit the memo associated with the memo field _NOTES.}

Set_MemoWindow_To(5,5,65,20,SingleLine,'');
GoTop;
EditMemo(calls._NOTES,'');
REPLACE;

Example 2: {permit the end-user only to view a memo}
EditMemo(calls._NOTES, 'PLAIN');

Example 3: {permit the end-user to view and edit, but not resize a memo}
EditMemo(calls._NOTES, 'NORESIZE');

Example 4: {permit the end-user only to view but not edit or resize a memo}
EditMemo(calls._NOTES, 'PLAIN NORESIZE');

Example 5: {set word wrap on, and inhibit the status line display}
EditMemo(calls._NOTES, 'WRAP NOSTATUS');

Example 6: EditMemo(MemoDemo._Plot, '');

 TOPAZ Technical Reference 277

if EditorResult >= 2 then Replace; { memo was changed and not
abandoned }

 278 TOPAZ Technical Reference

__

EditRecord procedure DBFEDIT

Purpose: Enters a full-screen mode to edit the fields of only the current record in the currently selected
database file. Data is listed vertically.

Declaration: EditRecord(Command : String);

Parameter: Command is a string which accepts the clauses PLAIN, NOSCROLL, and STAYON.

Notes: Unlike the dBASE EDIT command, EditRecord edits only the current record. The edit can
be windowed. See Set_EditWindow_To. The colors of the edit window are those currently in
effect from the most recent call to SET_COLOR_TO. Also unlike dBASE, EditRecord will
scroll data in the window. The programmer can inhibit scrolling with the NOSCROLL clause.

By specifying the PLAIN clause, EditRecord can be used to display a single record,
bypassing any editing. By default, EditRecord saves and restores the underlying screen. To
inhibit this feature, the programmer can specify the STAYON clause.

The programmer can inspect the value of EditResult after a call to EditRecord to determine
how the edit session was completed. The use of EditResult, WatchKeys and Lastkeys are
identical to their use with ReadGets. After a call to EditRecord, it is up to the programmer
to either REPLACE the record with the edited data, APPEND a new record, or ignore the
transaction.

EditRecord can be further customized by the use of the procedure Set_DataDefinition_To.
This directs EditRecord to pass control to a user-defined procedure that sets the global
DataDefinition^ record for each field (see pages 506, 507, 508). If the programmer wants
to suppress the display and data entry for a field, he should DBFAlias to an empty string, as
shown in Example 5 below.

See EDIT, ReadGets.

 TOPAZ Technical Reference 279

Example 1: {editing an existing record}
EditRecord('');
case EditResult of
 1,2,3 : SKIP(0); {restore data from disk; user aborted editing with

<Ctrl-Q> or <Esc>}
 else REPLACE; {write the new data to disk}
end;

Example 2: {editing a record to APPEND to the file}
EditRecord('');
case EditResult of
 1,2,3 : SKIP(0); {restore data from disk; user aborted editing with

<Ctrl-Q> or <Esc>}
 else APPEND; {write the new data to disk}
end;

Example 3: {viewing a record..editing not permitted}
EditRecord('PLAIN STAYON');

Example 4: {general purpose procedure to display, edit, or append records. The

calling program would set mode to 'D', 'E', or 'A' to specify action}

procedure HandleData(mode:char);
begin
 Case Mode of
 'D' : EditRecord('PLAIN NOSCROLL STAYON');
 'E' : begin

 EditRecord('');
 if EditResult < 1 then
 REPLACE
 else
 SKIP(0);
 end;

 'A' : begin
 EditRecord('');
 if EditResult < 1 then
 APPEND
 else
 SKIP(0);
 end;

 end;
end;

Example 5: { use EditRecord to display or edit records in an employee database, but
prevent the SALARY field from being displayed }

{$F+}
procedure SupressSalaries;
begin
 if DataDefinition^.FieldName = 'SALARY' then
 DataDefinition^.DBFAlias = '';
end;

.

.

.
Set_DataDefinition_To(@SupressSalaries);
EditRecord;

 280 TOPAZ Technical Reference

__

EditText procedure EDIT

Purpose: Invokes the TOPAZ text editor permitting the end-user to create and edit text files.

Declaration: EditText(TextFileName : PathStr);

Parameters: TextFileName is any valid DOS filename, an empty string, or a filename with wildcard
characters ('*' and '?'). If TextFileName is a valid filename, EditText will immediately load
the file and enter the editor. If TextFileName is an empty string, EditText will enter the editor
with a "NONAME" file. If TextFileName contains wildcard characters, EditText will first
present a PickFile of appropriate files in the current directory for the end-user to select before
entering the editor.

TextFileName can also be appended with clauses to configure the behavior of the editor.
These clauses are:

FULLSCREEN Causes the current editor window setting to be reset to the maximum
window size possible, with no frame.

AUTOSAVE Causes file to be saved to disk every time 500 characters have been
added or deleted from the file.

NOBACKUP Normally the editor renames the original file being edited with a BAK
extension. This clause inhibits this feature. (EditText only, not available
in EditMemo)

NOEDIT Permits viewing of the file or memo, and inhibits the end-user from
making any changes to the file.

NOSTATUS Inhibits display of status information on the top row.

NORESIZE Inhibits the end-user from moving or re-sizing (growing or shrinking)
the editing window.

NOCREATE Inhibits creating new files.

NORESTORE Normally the editor saves the underlying screen and restores it after the
edit session is complete. This clause inhibits this feature.

RULER Causes a "ruler" to be displayed on the bottom row of the editor window

WRAP Turns word wrapping on. The word wrap length is the width of the
editing window.

 TOPAZ Technical Reference 281

WRAP = <n> Sets the wrap width to n columns.

PLAIN Equivalent to NOEDIT NOCREATE. It does not inhibit resisizing.

SHOW Displays as much of the file in the current window as is possible and
returns control to the calling program.

Notes: Clauses may be in upper, lower, and mixed case, and combined although they must be
separated by a space. The editing window is set by Set_EditorWindow_To, and the color
attributes are determined by the most recent call to Set_Editor_Color_To.

EditorResult is set at the end of all EditText calls and indicates the manner in which the text-
editing session was exited:

EditorResult = 0 nothing happened, no changes, no saves, no abandonment
EditorResult = 1 memo changes were abandoned
EditorResult = 2 memo changes were saved
EditorResult = 3 file or memo made empty (zapped) and saved

Refer to the section "Editing Text" in the Tutorial part of this manual
for full information on the operation of the text editor.

Example 1: {set the editing window, and edit the file SAMPLE.TXT:}
Set_EditorWindow_To(5,5,65,20,SingleLine,'');
EditText('sample.txt');

Example 2: {permit the end-user to only view a file}
EditText('sample.txt PLAIN');

Example 3: {permit the end-user to view and edit, but not resize }
EditText('sample.txt NORESIZE');

Example 4: {permit the end-user only to view, but not edit or resize }
EditMemo('sample.txt PLAIN NORESIZE');

Example 5: {set word wrap on, and inhibit the status line display}
EditText('sample.txt WRAP NOSTATUS');

Example 6: EditText('MYFILE.TXT');
case EditorResult of
 0 : Writeln('You didn''t change the text');
 1 : Writeln('You abandoned your changes');
 2 : Writeln('You saved your changes');
 3 : Writeln('You saved an empty file');
end;

 282 TOPAZ Technical Reference

__

EJECT procedure TZPRINT

Purpose: Sends a form feed (chr(12)) to the list device if no page image has been prepared with AtPrint.
If a page image exists, EJECT causes the page image to be sent to the printer, and will clear
the page image.

Declaration: EJECT;

Notes: Equivalent to dBASE's EJECT command. If a printer is not available (offline, no paper, etc.),

EJECT presents a message and prompt on the scoreboard row. If a page buffer has been
defined and accessed with AtPrint, then EJECT will cause the contents of the page buffer to
be sent to the printer and any alternate device(s).

See AtPrint, AtPrintCommand, PrintPage, ClearPage.

Example: if LineNumber > 66 then EJECT;

 TOPAZ Technical Reference 283

__

EnableMouse procedure TZCOMMON

Purpose: Enables Mouse sensitivity to areas of the screen defined with prior calls to AddTarget.

Declaration: EnableMouse;

Notes: Once one or more "button" areas have been defined by calls to AddTarget, the application
must make a call to EnableMouse in order for TOPAZ to be sensitive to Mouse activities in
those areas. Detecting a Mouse event is then accomplished with calls to EventPending and
GetEvent.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call EnableMouse and DisableMouse since TOPAZ automatically calls them when
appropriate.

Example: {create two "buttons", wait for a left-button release on one of them,
and act accordingly}

var e : EventRec;

begin
 At(5,5,'OK');
 At(10,5,'Cancel');
 AddTarget(5,5, 7,5, 1, LeftButtonReleased);
 AddTarget(10,5,15,5, 2, LeftButtonReleased);
 EnableMouse;
 GetEvent(e);
 case e.WhichEvent of
 Keyboard :; {not interested in keystrokes here}
 Mouse : case e.TargetID of

 1 : At(1,20,'You pressed OK');
 2 : At(1,20,'You pressed Cancel');

 end;
 end;
 DisableMouse;
end.

 284 TOPAZ Technical Reference

__

EraseFile procedure DBF4

Purpose: Deletes a file from the disk.

Declaration: EraseFile(Filename : String);

Parameter: Filename is the name of the file to be deleted.

Notes: File to be erased must not be open. Path must be specified if file is not in the current drive or
directory. If the file to be erased is not found, the global variable DBFError will be set, if
AUTOHALT is ON, the program will terminate. Testing for the existence of the file first with
the function FileExists is recommended.

EraseFile will also handle wild cards, and will erase only "normal" files if you specify a wild
card (i.e, not R/O files, directories, system files, hidden files, or volumeID). Error handling
is quite a bit different for wildcard erasing, however. Instead of autohalting on an error if a file
could not be erased, the routine remembers the SearchRec for that file and keeps going. At
the end of the task, if any of the files could not be erased, then we autohalt. The application
program can find out exactly which files failed to be erased by a call to the new pointer
function NotErased. NotErased returns Nil if everything went ok (DbfError will be zero, too).
If not Nil, it points to a structure of type SearchRec. Every time you call NotErased it returns
another file that was not erased, until it returns Nil. It is not necessary for the programmer to
call NotErased. The next call to EraseFile will freemem the linked list that NotErased is
based on. See Example 4 below.

Example 1: if OK then EraseFile('C:\MAILLIST\TEMP.DBF');

Example 2: {to guard against an error:}
Set_AutoHelp_Off;
EraseFile('TEMP.DBF');
Set_AutoHalt_On;
if DBFError>0 then WriteLn('File not found!');

 TOPAZ Technical Reference 285

Example 3: {or equivalently:}
if FileExists('TEMP.DBF') then
 EraseFile('TEMP.DBF')
else
 WriteLn('File not found!');

Example 4: uses dos, dbf4;

var Temp : ^SearchRec;

begin
 Set_Autohalt_Off; {don't autohalt}
 EraseFile('b:*.bak');
 Set_AutoHalt_On;
 Temp := NotErased; {determine which files were not erased}
 while Temp <> Nil do
 begin
 Writeln(Temp^.name);
 Temp := NotErased;
 end;
end.

 286 TOPAZ Technical Reference

__

EvaluateBiggest function VFILES

Purpose: Determines which type of memory has the most storage left before choosing one to store a
Virtual File.

Declaration: EvaluateBiggest : String;

Notes: This function returns a phrase indicating which of the two types of memory has the most
available storage. The phrases returned are:

TO HEAP if the Heap has the most available memory
TO EMS if Expanded memory has the most available memory

The result of this function can be used as an argument to other functions to determine if there
is enough memory to use in the BIGGEST area (see example). See AvailableMemory,
RequiredMemory.

Example: EntireDatabaseSize := RecCount * SizeOf (MyData);
if EntireDatabaseSize > AvailableMemory (EvaluateBiggest) then
 USE ('MyData.DBF', @MyData, SizeOf (MyData)) {goes to DISK}
else
 USE('*MyData* VIRTUAL FILE TO BIGGEST', @MyData,

SizeOf (MyData));

If you already know there is enough storage, you can either use the phrase TO BIGGEST in
the USE statement, or you can call the function in the USE statement, as:

USE('*MyData* VIRTUAL FILE' + EvaluateBiggest, @MyData,
SizeOf(MyData));

 TOPAZ Technical Reference 287

__

EventPending function TZCOMMON

Purpose: Returns true if either a key has been pressed or a Mouse event (such as a click) has occurred
matching a "hit" in any of the Mouse-active areas defined by prior calls to AddTarget.

Declaration: EventPending : Boolean;

Notes: Once targets have been specified with calls to AddTarget, and the Mouse has been enabled
with a call to EnableMouse, the program can determine whether a Mouse event has occurred
by calling EventPending. If a key has been pressed EventPending returns True . Thus,
EventPending is a super-set of the KeyPressed function. Any call to KeyPressed can be
replaced with EventPending in a non-Mouse application with no further considerations.
Mouse-sensitive applications must replace calls to KeyPressed with EventPending in order
to work properly. EventPending has the same relation to GetEvent as KeyPressed to
ReadKey. That is, once EventPending is returns True, GetEvent returns the Event record of
an assured keystroke or Mouse event. Unless you want to add additional Mouse support it is
normally not necessary to call EventPending since TOPAZ automatically calls them when
appropriate.

Example 1: {wait for an event, then throw it away}

AddTarget(1,1,80,25,1, LeftButtonReleased
or RightButtonReleased);

EnableMouse;
Writeln('Press any key or click Mouse');
repeat until EventPending;
GetEvent(e);

Example 2: {wait for an event while beeping, then act on the result}
AddTarget(1,1,5,3,1,LeftButtonReleased);
EnableMouse;
Writeln('Press any key or click on upper left corner');
repeat
 Sound(1000);
 delay(200);
 NoSound;
 delay(200);
until EventPending;
GetEvent(e);
case e.WhichEvent of
...

 288 TOPAZ Technical Reference

__

FExpand function TZCOMMON (W)

Purpose: Expands a file name into a fully qualified filename (Windows version only).

Declaration: FExpand(Filename : PathStr) : PathStr;

Notes: This is a string-parameter shell that calls WinDos. FileExpand(). This function expands the
file name in Filename into a fully qualified filename. The result is converted to uppercase,
consisting of a drive letter, a colon, a root relative directory path, and a file name. Embedded
'.' and '..' directory references are removed.

Example: FullPathFilename := FExpand(fn);

 TOPAZ Technical Reference 289

__

FIELD function DBF4

Purpose: Returns the field name of the nth field in a dBASE DBF file. Intended for use where the field
of interest is not known until run time.

Declaration: FIELD(N : Byte) : String;

Parameter: N is the order of the field in the dBASE file structure, and must be in the range of
1..FieldCount.

Notes: FIELD is an intermediate level TOPAZ command. The field returned by FIELD is trimmed
of trailing spaces. FIELD returns a null string and sets DBFError to 220 if n is invalid, and
DBFError to 215 if no database is open in the current work area.

Example: FirstFieldName := FIELD(1);

{Display a list of field names from the currently selected database}
For i := 1 to FieldCount do WriteLn(FIELD(i));

 290 TOPAZ Technical Reference

__

FieldAddress function DBF4

Purpose: For a given field number, FieldAddress returns a pointer to the location of the first byte of
data of the specified field in the end-users work area for the currently selected database.
Intended for use where the field of interest is not known until run time.

Declaration: FieldAddress(FieldNumber : Byte) : Pointer;

Parameters: FieldNumber must be in the range of 0..FieldCount. If FieldNumber is zero, FieldAddress

returns a pointer to the first byte of the user's record (i.e., the boolean Deleted flag).

Notes: FieldAddress is an intermediate level TOPAZ command. Together with FieldNo, this

function can be used for applications where the end-user would supply the field name of
interest at run time. FieldAddress will return the Nil pointer and set DBFError to 220 if it
is passed an invalid FieldNumber, or set DBFError to 215 if no database is currently active.
See FieldNo, FieldType, FieldLen, FieldDec, and FieldCount.

Example: In this example, the goal is to display the data in a field specified on the DOS command line,
and we are certain that the field is a character field.

n := FieldNo(ParamStr(1));
Where := FieldAddress(n);
WriteLn(String(Where^));
{output: contents of Field #n assuming it is a character field}

 TOPAZ Technical Reference 291

__

FieldCount function DBF4

Purpose: Returns the number of fields in the currently selected database. Intended for use where the
field of interest is not known until run time.

Declaration: FieldCount : Byte;

Notes: FieldCount is an intermediate level TOPAZ command. FieldCount returns zero and sets
DBFError to 215 if no database is open in the selected area.

Example: {Display the field names}
For i := 1 to FieldCount do WriteLn(Field(i));

 292 TOPAZ Technical Reference

__

FieldDec function DBF4

Purpose: Returns the number of decimals specified for the given field number in the currently selected
dBASE database. Intended for use where the field of interest is not known until run time.

Declaration: FieldDec(FieldNumber : Byte) : Byte;

Parameter: FieldNumber must be in the range of 1..FieldCount.

Notes: FieldDec is an intermediate level TOPAZ command. Decimal widths are 0 to 15 and will be
at least 2 less than the field width. FieldDec returns zero for non-numeric field types.
FieldDec sets DBFError to 220 if an invalid field number is specified, or sets DBFError to
215 if no database is open in the current work area.

Example: DecimalPlaces := FieldDec(n);

 TOPAZ Technical Reference 293

__

FieldLen function DBF4

Purpose: Returns the database field length for the given field number in the currently selected dBASE
database. Intended for use where the field of interest is not known until run time.

Declaration: FieldLen(FieldNumber : Byte) : Byte;

Parameter: FieldNumber must be in the range of 1..FieldCount.

Notes: FieldLen is an intermediate level TOPAZ command. FieldLen returns zero and sets
DBFError to 220 if an invalid field number is specified or 215 if no database is open in the
current work area.

Example: FieldWidth := FieldLen(n);

 294 TOPAZ Technical Reference

__

FieldNo function DBF4

Purpose: Returns the database field number for a given field name in the currently selected dBASE
database. FieldNo belongs to a family of functions which permit the programmer to determine
the position of and characteristics of data in memory when such information is not available
at compile time. FieldNo provides the basic argument required by the rest of the family.

Declaration: FieldNo(FieldName : Fldname) : Byte;

Parameters: FieldName is the name of the field, and Fldname is TYPE String10.

Notes: FieldNo is an intermediate level TOPAZ command. If FieldName is not a valid field name,

zero is returned. FieldNo is the inverse operation of the function Field. See Field,
FieldAddress, FieldLen, FieldType, FieldDec, and FieldCount.

Example: n := FieldNo(Paramstr(1));

 TOPAZ Technical Reference 295

__

FieldType function DBF4

Purpose: Returns the database field type for the given field number in the currently selected dBASE
database. Intended for use where the field of interest is not known at compile time.

Declaration: FieldType(FieldNumber : Byte) : Char;

Parameter: FieldNumber must be in the range of 1..FieldCount.

Notes: FieldType is an intermediate level TOPAZ command. The characters returned are 'C', 'D',
'N', 'L', and 'M' for character, date, numeric, logical, and memo types respectively. If an invalid
field number is specified, FieldType returns a blank character and sets DBFError to 220.

Example: if FieldType(n) = 'C' then WriteLn('Character Field');

 296 TOPAZ Technical Reference

__

FileAge procedure TZUTILS

Purpose: Determines the age of a given file.

Declaration: FileAge(Fn : PathStr; var Age : DateTime;
var Success : Boolean);

Parameters: Fn is the name of the DOS file whose age is to be returned. Age is the age of the file returned
in a Borland DateTime record, with the day, hour, minute, and sec fields filled in. Success is
set to False if the file does not exist.

Notes: Certain applications depend on the age of a file. For example, it may be desired for an
application to test the date of particular file and determine whether the file has been recently
updated. Computing the age of a file given the system date and file date can be messy. FileAge
provides a ready made means of accomplishing this task.

Example: {List the age of all .TXT files}
FindFirst('*.TXT', AnyFile, s);
while DOSError = 0 do
 begin
 FileAge(s.Name, age, success);
 Writeln(s.Name,' ',Age.Day,' days, ',Age.Hour,' hours,

and ',Age.Min,' minutes old);
 FindNext(s);
 end;

{ a typical output string of the above code would be:
CUSTOMER.TXT 3 days 17 hours, and 4 minutes old }

 TOPAZ Technical Reference 297

__

FileDate function TZUTILS

Purpose: Returns the date of file in mm/dd/yy hh:mm:ss format.

Declaration: FileDate(Fn : PathStr) : String;

Parameter: Fn is the name of the file.

Notes: Borland/Turbo Pascal provides means of determining the date of a file by filling a variable of
type DateTime. For display and reporting purposes, however, oftentimes a string is required.
FileDate returns such a string. If the file cannot be found, FileDate returns the empty string.

Example: {List the time stamps of all .TXT files}
FindFirst('*.TXT', AnyFile, s);
while DOSError = 0 do
 begin
 Writeln(s.Name,' ',FileDate(fn));
 FindNext(s);
 end;

{Typical output would be:
CUSTOMER.TXT 02/14/93 13:02:30 }

 298 TOPAZ Technical Reference

__

FileExists function SAYGET4

Purpose: Returns True if the file of a specified name exists.

Declaration: FileExists(Filename : String) : Boolean;

Parameter: Filename is any valid DOS filename. Filename can also contain a "wildcard". FileExists
returns True if there there are one or more files that match the wildcard specification. Both
'?' and '*' are recognized.

Notes: If a path is not supplied then the current directory on the currently logged drive will be
searched. Filename will be found even if it has a Read Only or Hidden file attribute.

The use of wildcards is particularly useful before a call to PickFile to establish that files exist
to pick. See Example 3 below.

Example 1: if FileExists('customer.DBF') then ...

Example 2: if FileExists('*.DBF') then
 WriteLn('There are database files.');

Example 3: if FileExists('*.DBF') then
 filename := PickFile('*.DBF NOEXTENSION')
else
 c:=DialogBox('No database files found!','');

 TOPAZ Technical Reference 299

__

FileInUse function TZUTILS

Purpose: Returns True if the specified file has already been opened by another network node.

Declaration: FileInUse(Filename : String) : Boolean;

Parameter: "Filename" is a DOS file name.

Notes: FileInUse can be used by applications in situations where the end-user has entered a file
name to write to (such as a report or text file). The application can call FileInUse to detect
whether the desired file is already open. See FileExists, ValidFileName, USE.

FileInUse always returns False in a single user application.

Example: SayGet(10,10,'Text file to write to:',fn,_S,12,0);
ReadGets;
if FileInUse(fn) then
 begin
 DialogBox(fn+' is already open!', '');

 Exit;
 end;

 300 TOPAZ Technical Reference

__

FillPage procedure VIDPOP

Purpose: FillPage will make a copy of the current screen to any buffer pointed to by the specified
parameter.

Declaration: FillPage(PagePtr : Pointer);

Notes: It is up to the programmer to make sure that the buffer pointed to is of sufficient size to hold
an entire screen. The normal 25 row by 80 column screen requires a buffer of 4000 bytes, a
43 row/80 column screen (EGA) needs 6880 bytes, and a 50 row screen (VGA) needs 8000
bytes. FillPage always saves the screen from video page 0 (zero).

A global variable VidpopPageSize : Word is set by default to 4000 bytes and is used by
FillPage and DisplayPage as the size of the current buffer in bytes. If your program never
uses any of the additional lines available in the extended text modes you do not need to change
the default page size. If you do adjust the page size be sure that you always have an
appropriately sized buffer before calling FillPage and that VidpopPageSize is the same value
when you restore the screen from that buffer with DisplayPage. FillPage and DisplayPage
have no way to check that the buffers you supply are correctly sized. You may have as many
screen buffers as you wish and PagePtr may optionally point to the hardware video buffers
(pages) if available.

Example 1: {Normal 80x25 screen (example of storing a screen on the stack)}

procedure TestFillPage;
var Buffer : array[1..4000] of Byte;
{ buffer size must match VidpopPageSize }
begin
 VidpopPageSize := 4000; { default value }
 FillPage(@Buffer); { note the "@" prefix }
 {...do something here...}
 DisplayPage(@Buffer);
end.

 TOPAZ Technical Reference 301

Example 2: {80x43 line EGA screen
(example of storing a screen on the heap)}

procedure TestFillPage;
 var Buffer : Pointer;
 begin
 VidpopPageSize := 6880; {43 rows }
 GetMem(Buffer,VidpopPageSize); {put buffer on heap}
 FillPage(Buffer);
 {...do something here...}
 DisplayPage(Buffer);
 FreeMem(Buffer,VidpopPageSize); {let go of buffer}
end.

Example 3: {80x50 line VGA screen}

procedure TestFillPage;
var Buffer : Pointer;
begin
 VidpopPageSize := 8000; { bytes in a 50 row screen }
 GetMem(Buffer,VidpopPageSize); { put buffer on heap }
 FillPage(Buffer);
 {...do something here...}
 DisplayPage(Buffer);
end.

 302 TOPAZ Technical Reference

__

FillWindow procedure VIDPOP

Purpose: Saves the contents of the specified rectangular area of the screen in an appropriately sized
buffer and fills the fields of the var parameter with the coordinates, a pointer to the buffer, and
the size of the buffer.

Declaration: FillWindow(Col1, Row1, Col2, Row2 : Byte; var W
: WindowRec);

Parameters: The first four parameters define the rectangular area of the screen to be saved. The parameter
W refers to an existing variable declared as type WindowRec.

Notes: FillWindow will allocate space on the heap sufficient to store the screen and then record the
size, coordinates, and the pointer to the buffer it allocated in the supplied variable W. When
the procedure DisplayWindow(W) is called, the saved window will be re-displayed at the same
coordinates that it came from and the heap space used to store the screen is recovered. The
window may have any number of rows up to the 50 row limit of a VGA. It is not necessary
to initialize the W parameter prior to calling FillWindow. The structure of the record type for
parameter W (used by both FillWindow and DisplayWindow) is defined below. If any of the
parameter coordinates are equal to 255 then FillWindow will save the contents of the current
Pascal "window" as specified with the standard procedure Window().

type WindowRec = record
 X1,Y1 { top left corner }
 X2,Y2 : Byte; { bottom right corner }
 BufferPtr : Pointer;
 BufferSize : Word;
 SaveBuffer : Boolean;
end;

If there is not enough memory to save the current window, FillWindow will return after
setting W.BufferPtr = NIL and W.Buffersize = 0.

The boolean field SaveBuffer is normally False. By setting SaveBuffer to True prior to a call
to FillWindow, the window saved can be displayed over and over again with calls to
DisplayWindow. In order to dispose of the memory used by FillWindow, you must set
SaveBuffer to False, and then call DisplayWindow. Alternatively, you can deallocate memory
yourself by using the following code:

FreeMem(W.BufferPtr, W.BufferSize);

Example: var Window1 : WindowRec;
begin
 FillWindow(10,10,20,50,Window1);

 TOPAZ Technical Reference 303

 if Window1.BufferPtr = Nil then Exit;
 {...do something...}
 DisplayWindow(Window1);
end;

 304 TOPAZ Technical Reference

__

FIND procedure INDEX4

Purpose: Searches the current primary index for the specified string, and positions the currently active
database to the record if found. Like dBASE, if no match is found the database is positioned
past EOF, and the user's record is blank. The global variable Found is set to True if the match
is found, false otherwise.

Declaration: FIND(Search_String : String);

Parameter: Search_String is any literal or variable string, or the results of a string function.

Notes: Since FIND can work with either literals (constants), variables, or expressions, it is
equivalent to either the dBASE FIND or SEEK commands. Use SET_ORDER_TO to change
the primary index if necessary. The primary index is determined by:

1. INDEX_ON sets the index it builds as the primary (and only) index.

2. SET_INDEX_TO with a third parameter of 1 sets the primary index.

3. SET_ORDER_TO.

Refer to SET_EXACT_ON and its effects on the behavior of FIND. See SET_INDEX_TO,
INDEX_ON, FindNear, SET_EXACT_ON/OFF, SET_ORDER_TO, REINDEX, MakeIndex.

Example: USE('customer',@customer,SizeOf(customer));
SET_INDEX_TO(@KeyMaker, 'custind', 1);
FindName := SPACE(30);
SayGet(10,10,'Customer to find: ', FindName,_S,30,1);
ReadGets;
FIND(UPPER(FindName));
if FOUND then
 At(10,11,'Customer lives in '+Customer.City');
else
 At(10,11,'Can''t find '+FindName+'!');

 TOPAZ Technical Reference 305

__

FindFirst procedure TZCOMMON (W)

Purpose: Searches a specified (or the current) directory for the first entry matching the specified file
name and set of attributes (Windows version only).

Declaration: FindFirst(Filename:String; Attr: Word;Var S: SearchRec);

Parameters: Filename is the directory mask (for example, *.DBF). Attr specifies the additional files to
include(in addition to all normal files).

Notes: This is a simple shell for WinDos.FindFirst(), using a string parameter instead of a PChar
parameter.

Example: FindFirst('*.dbf',AnyFile, srec);
while DosError = 0 do
begin
 fn := srec.name;
 {process file....}
 FindNext(srec);
end;

 306 TOPAZ Technical Reference

__

FindNear procedure INDEX4

Purpose: Searches the primary index for the specified string, and positions the currently active database
to either the record with a matching key if found, or the record with the next greater key if not
found.

Declaration: FindNear(Search_String : String);

Parameters: Search_String is any literal or variable string, or the results of a string function.

Notes: FindNear is a "soft find". Unlike FIND, which positions the database past EOF when the find
is unsuccessful, FindNear goes to the record with the next greater key. Only if there are no
keys greater than search_string, does FindNear position the file past EOF. The programmer
can find the record with a key nearest to search_string, but less than, by calling FindNear and
doing a SKIP(-1). FindNear respects the user-defined Filter function (if set by
SET_FILTER_TO), and deleted records (if SET_DELETED_ON has been called).

Example: {process all records in August}
USE('journal', @journal, SizeOf(journal));
SET_INDEX_TO(@DateKey, 'journal', 1);
FindNear('08/01/89');
while (not dEOF) and (journal._DATE < '09/01/89') do
begin
 ProcessThisRecord;
 SKIP(1);
end;

Notice that a FIND in this application is unreliable: if the first record in August is '08/03/89',
FIND will position the file past EOF. The call to FindNear solves this problem.

 TOPAZ Technical Reference 307

__

FLOCK function DBF4/NET

Purpose: Locks a multi-user database file to prevent modification of that database by any other work-
station. FLOCK logically locks all the records in the currently selected open database file.

Declaration: FLOCK : Boolean;

Notes: Returns True or False according to whether the lock was successful. Returns False if any kind
of lock owned by another user exists on the current file. FLOCK is used when performing
operations that need every record of a file locked. For instance, consider the case where the
programmer wishes to extract certain records from an indexed file (i.e., copy these records to
a temporary file for further processing) by calling GoTop and SKIPing through each record
until dEOF. Suppose the file is not FLOCKed, and the process has proceeded smoothly from
"ABLE" to "EDWARD". At this very moment, another end-user edits the "MARY" record to
"BARBARA". The process is now beyond "BARBARA" and of course there is no longer a
"MARY" record, so that the process will finish with a missing record. If the process is re-run,
the record will magically reappear. To avoid this problem, the programmer must FLOCK
the file.

Like dBASE, you can also use FLOCK to lock a file prior to appending records. However,
the ALOCK function is the preferred method for appending, as ALOCK permits other users
to edit and replace records while your records are being appended. Unlike dBASE, a locked
file does not prevent other users from reading records in the file. Once locked, the file may be
unlocked by calling UNLOCK, closing the file, or terminating the program. Always call
UNLOCK before attempting to issue another lock of any type. See RLOCK, ALOCK,
UNLOCK, Set_Retry_To.

Example: USE('names', @names, SizeOf(names));
SET_INDEX_TO(@NameKey, 'names', 1);
repeat until FLOCK;
SET_FILTER_TO(@IncomeFilter);
GoTop;
CopyTo('tempfile');
UNLOCK;

 308 TOPAZ Technical Reference

__

FlushDBF procedure DBF4

Purpose: Forces modified data to be written to disk.

Declaration: FlushDbf;

Notes: Normally DOS buffers data and writes to disk when its buffers are full. TOPAZ permits the
programer to SET_FLUSH_ON as a global command to force writing to disk whenever
records are REPLACEd or APPENDed. The disadvantage of this approach is that flushing
each record can noticably slow the performance of the application. The procedure FlushDBF
permits the programer to decide when to flush the DOS buffers. For instance the programmer
may determine that an acceptable tradeoff of security vs. performance can be achieved by
calling FlushDBF every 20 REPLACEs. See SET_FLUSH_ON, CommitDBF.

Example: {add 20 blank records to a file and then flush}
ClearRecord;
for i := 1 to 20 do APPEND;
FlushDBF;

 TOPAZ Technical Reference 309

__

FractString function TZUTILS

Purpose: Returns a real number as string of whole number plus fractional part (rather than as a decimal
number).

Declaration: FractString(R : Real; D : Integer) : String;

Parameters: R is a real number to be converted to a string. D is the denominator of the smallest fraction
to be represented.

Notes: The function is useful in certain applications where it is common practice to represent
quantities to the nearest fraction. For example, stock prices are quoted to the nearest 1/8 point.
One speaks of closing stock price being 93 and 1/8 for instance, and not 93.125. A space is
inserted between the whole number and the fractional part. If no fractional part exists, only
the whole number is returned. Fractional parts are always returned in the lowest denominatior.

Example 1: {convert a stock price into 1/8 ths}
WriteLn(FractString(Price, 8));

Example 2: {express inches in 64ths}
x := 6.174
WriteLn(FractString(x,64));
{displays "6 11/64"}

Example 3: {variation on example 2}
WriteLn(FractString(6.174,9));
{displays " 6 2/9" }

Example 4: {fractions are reduced if possible}
WriteLn(FractString(1.5,60));
{displays "1 1/2" not "1 30/60"}

Example 5: {combine Before and After to extract whole and fractional parts}
S := FractString(34.127,8);
WholePart := Before(' ',s);
Fraction := After(' ',s);

 310 TOPAZ Technical Reference

__

FreeSpace function VFILES

Purpose: Determines how much memory is left in the currently selected work area.

Declaration: FreeSpace : LongInt;

Notes: This function returns the amount of available memory in the currently selected work area. If
the current area refers to a disk file, the amount of available disk storage on the current drive
is returned. This function should be used to determine if there is enough space remaining to
expand the file or list. This function works exactly like the AvailableMemory function, except
that the current work area is assumed, and its associated memory type is used.

Example: if SizeOf (MyData) > FreeSpace then
 At (1, 1, 'No more memory available to append')
else
 begin
 ... fill in a new record ...
 APPEND;
 end;

 TOPAZ Technical Reference 311

__

FSplit procedure TZCOMMON (W)

Purpose: Splits a filename into its three component parts (Windows version only).

Declaration: FSplit(Filename : PathStr; Var Dir : DirStr;
Var Name : NameStr; Var Ext : ExtStr);

Parameters: Dir returns the drive and directory path with any leading and trailing backslashes, Name
returns the filename, and Ext returns the file extension with a preceding dot.
NOTE: Each of the three components may be empty, if Filename contains no such component
part.

Notes: This is a simple shell for WinDos.FileSplit(), using string parameters instead of PChar
parameters.

Example: FSplit(fn,d,n,e);
x := d + n + e;
{x = fn = true}

 312 TOPAZ Technical Reference

__

FullDate function TIMEDATE

Purpose: Returns a date in plain text.

Declaration: FullDate(Date : String10) : String;

Parameters: Date is in the format of MM/DD/YY if CENTURY is set OFF, or MM/DD/YYYY if
CENTURY is set ON. If COUNTRY is set to other than American, the prevailing format
applies in the same way.

Examples: WriteLn(FullDate('01/01/89'));
{output: 'Wednesday, January 1st, 1989'}

WriteLn(FullDate(SystemDate));
{might output: 'Monday, February 22nd, 1989'}

 TOPAZ Technical Reference 313

__

GetAtPrint function TZPRINT

Purpose: Returns the character at Col,Row of the current AtPrint page buffer.

Declaration: GetAtPrint(Col,Row : Word) : Char;

Parameters: Col and Row refer to any valid position in the current AtPrint page buffer.

Notes: GetAtPrint allows the programmer to inspect individual characters in a print page buffer
prior to printing. See AtPrint.

Example: { uppercase a line of text which is already on the page }

for i := 1 to 80 do
 AtPrint(i,row,UpCase(GetAtPrint(i,row)));

__

GetAtPrintControl function TZPRINT

Purpose: Returns a printer control string attached at a position in an existing AtPrint page buffer.

Declaration: GetAtPrintControl(Col,Row : Word) : String;

Parameters: Col,Row point to a position in the page buffer.

Notes: Allows the programmer to retrieve and inspect any printer control string in a print page image.
See AtPrintControl.

Example: { Determine if there is a printer control string at a specific position

}
if GetAtPrintControl(10,10) = ' ' then

AtPrintControl(10,10,Bold);

 314 TOPAZ Technical Reference

__

GetDBFRecord procedure TZDBFLOW

Purpose: Reads one dBASE record into a buffer.

Declaration: GetDBFRecord(var R : DBFRecord; RecNum : LongInt);

Parameter: R identifies which database and RecNum identifies which record to read.

Notes: This is a low level TOPAZ command. For details see the section "Low Level Access to
dBASE Files" in the Appendix of this manual.

 TOPAZ Technical Reference 315

__

GetEvent procedure TZCOMMON

Purpose: Returns an event record when a keystroke or a Mouse event (such as a click) has occurred
matching a "hit" in any of the Mouse active areas defined by prior calls to AddTarget.

Declaration: GetEvent(var e : EventRec);

Parameter: e is a record of type EventRec that is filled with data by the procedure when an event has
occurred. EventRec is a variant record:

EventRec = record
KeyStates : Byte;
case WhichEvent : EventType of

 Keyboard : (ScanCode : Byte;
 Key : Char);

 Mouse : (x,y : Byte;
 WindX,WindY : Byte;

 ButtonMask : Byte;
 TargetID : Integer;
 DoubleClick : Boolean);

end;

where EventType is an enumerated type:

EventType = (Null, Keyboard, Mouse);

Thus, e reports whether the event was a keystroke or Mouse event. If a key was pressed, e
reports the key and scan code. If the Mouse was clicked, e reports which target area was
clicked (TargetID), whether the click was a double click, the absolute column and row
coordinates of the Mouse (x and y), the relative position of the Mouse in the active window
(WindX and WindY), the state of the button that caused the Mouse event (show below
numerically as predefined constants):

LeftButtonDown = 2;
LeftButtonReleased = 4;
RightButtonDown = 8;
RightButtonReleased = 16;
CenterButtonDown = 32;
CenterButtonReleased = 64;

Finally, for either states of the event record, KeyStates indicates the condition of the <Shift>,
<Alt>, <Ctrl>, <CapsLock>, <Ins>, <ScrollLock>, and <NumLock> keys:

Right shift key = 1
Left shift key = 2

 316 TOPAZ Technical Reference

Ctrl key = 4
Alt key = 8
ScrollLock key = 16
NumLock key = 32
CapsLock key = 64
Ins (Insert key) = 128

GetEvent is to EventPending as ReadKey is to KeyPressed. In non-Mouse applications, it
is benign to replace all calls to ReadKey with calls to GetEvent, and then inspecting e.Key
and e.ScanCode to get the key pressed and its scan code. In Mouse sensitive applications it
is mandatory to call GetEvent to inspect either the keystroke or Mouse event.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call GetEvent since TOPAZ automatically calls them when appropriate.

Example 1: {Get a keystroke in a non-Mouse application, as an optional approach to
ReadKey}
GetEvent(e);
if e.Key = #0 then
 case e.ScanCode of {extended key}
 ...
 end;
else {normal key}

Example 2: { Get a keystroke or Mouse event }
{ See example under AddTarget }

Example 3: {Get a Mouse event, ignore keystokes}

AddTarget(5,5, 7,5, 1, LeftButtonReleased);
EnableMouse;
GetEvent(e);
case e.WhichEvent of
 Keyboard :; {not interested in keystrokes here}
 Mouse : At(1,20,'You pressed the button');
end;
DisableMouse;

 TOPAZ Technical Reference 317

__

GetMouseXY procedure TZCOMMON

Purpose: Returns the current position of the Mouse.

Declaration: GetMouseXY(var x,y : Byte);

Parameters: x and y are the absolute column and row coordinates of the Mouse.

Notes: Unless the programmer wants to add additional Mouse support it is normally not necessary
to call GetMouseXY since TOPAZ automatically calls them when appropriate.

Example: GetMouseXY(x,y);
Writeln('The Mouse is at column ',x,' and row ',y);

 318 TOPAZ Technical Reference

__

GO procedure DBF4

Purpose: GO moves the record pointer of the currently selected database to the nth record in the file.
The user record associated with that database is updated to contain the data from the nth
record. If the database does not contain a record corresponding to n, the record pointer will
be placed at one past the last record in the file, the user record is blank, and dEOF will return
True.

Declaration: GO(N : LongInt);

Parameter: N is the record number of the dBASE file to be read from disk.

Notes: GO will position the database at any record that exists regardless of any filters or the state of
SET_DELETE. Any changes to the data currently in memory will be lost unless a REPLACE
or APPEND is called before GO. Will generate an error if n is less than 1 or greater than
RecCount. See GoTop, GoBottom.

Example: USE('customer', @customer, SizeOf(customer));
GO(SavedRecNo);

 TOPAZ Technical Reference 319

__

GoBottom procedure DBF4

Purpose: GoBottom moves the record pointer of the currently selected database to the last record in
the file. The user record associated with that database is updated to contain the data from the
last record.

Declaration: GoBottom;

Notes: Any changes to the data currently in memory will be lost unless a REPLACE or APPEND is
called before GoBottom. If a primary index is active, the database record pointer moves to
the last ordered record. If a filter is active, or SET_DELETED is ON, the last valid record will
be considered as End-of-File. See SET_DELETED_ON, SET_FILTER_TO.

Example: USE('customer', @customer, SizeOf(customer);
GoBottom;
WriteLn('Last Record in file = ', Customer.LastName);

__

GoTop procedure DBF4

Purpose: GoTop moves the record pointer of the currently selected database to the first record in the
file. The user record associated with that database is updated to contain the data from the first
record.

Declaration: GoTop;

Notes: Any changes to the data currently in memory will be lost unless a REPLACE or APPEND is
called before GoTop. If a primary index is active, the database record pointer moves to the
first record in indexed order. If a filter is active, or SET_DELETED is ON, the first valid
record will be considered Beginning-of-File. See GO, GoBottom, SET_FILTER_TO,
SET_DELETED_ON.

Example: USE('customer',@customer,SizeOf(customer));
GoTop;
WriteLn('First Record in file = ', Customer.LastName);

 320 TOPAZ Technical Reference

__

GraphicsMode function VIDPOP

Purpose: Returns True if the current video mode is one of the various graphics modes.

Declaration: GraphicsMode : Boolean;

Example: if GraphicsMode then
 { change back to TextMode }
 TextMode(LastMode);

 TOPAZ Technical Reference 321

__

HideMouse procedure TZCOMMON

Purpose: Causes the Mouse cursor to disappear.

Declaration: HideMouse;

Notes: If you plan to write data to the screen using Write, Writeln, or any method that relies on the
BIOS video interrupt ($10), it is possible for the Mouse cursor to leave unintended
"droppings". The solution to this problem is to call HideMouse before such screen display,
and then ShowMouse after the screen display. If the Mouse was already hidden before the call
to HideMouse, ShowMouse will not cause the Mouse cursor to become visible. Any call to
At(), Paint(), or ClrScr, ClearEol(), or any other TOPAZ screen display routine will
automatically hide and show the Mouse. When a routine turns off the Mouse cursor with
HideMouse any subroutine may also call HideMouse and ShowMouse for whatever reason
without worry of causing the Mouse cursor to be visible prematurely.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call HideMouse or ShowMouse since TOPAZ automatically calls them when appropriate.

Example 1: {write to the screen preventing Mouse "droppings"}
HideMouse;
Writeln('Here is some data');
ShowMouse;

Example 2: { write to the screen using At() }
At(1,1,'Here is some data');
{ ShowMouse and HideMouse are not necessary, since At() deals with the
problem internally }

 322 TOPAZ Technical Reference

__

IIF function SAYGET4

Purpose: Returns either of two strings depending on a boolean expression.

Declaration: IIF(Expr : Boolean; TrueStr, FalseStr : String) : String;

Parameters: Expr is a boolean literal, var, or expression. If Expr is True, IIF returns TrueStr, otherwise
it returns FalseStr.

Notes: IIF ("immediate if") emulates the dBASE IIF routine. Nesting IIF statements can be a
powerful way of selecting a string from a complex set of logical expressions.

Example 1: {simple immediate if}
Write(IIF(maillist._SEX='M', 'Mr.', 'Ms.'));
{prints "Mr." if the _SEX field is "M" (male), "Ms." otherwise}

Example 2: {nested immediate if}
Write(

IIF(n=0, 'None',
IIF(n=1, 'One', 'Many')));

{prints "None" if n=0, "One" if n=1, and "Many" if n>1}

 TOPAZ Technical Reference 323

__

Indent function TZUTILS

Purpose: Returns the starting column to display or print a centered string.

Declaration: Indent(S : String; W : Byte) : Byte;

Parameters: S is the string to be centered and W is the width in which to center S.

Notes: Indent is useful in placing centered strings on the screen, or with AtPrint to determine where
to place a centered printed string. If the length of S is not less then W, Indent returns zero.
See Center.

Example 1: {center string on screen}
s := 'Main Menu';
At(Indent(s,80), row, s);

Example 2: {center string in report}
s := 'DEDUCTIONS';
AtPrint(Indent(s,132), row, s);

Example 3: {center a string on the screen}
s := TRIM(FirstName) + ' ' + TRIM(LastName);
GoToXY(Indent(s),80);
Write(s);

Example 4: At(Indent('Main Menu',80),row, 'MainMenu');

 324 TOPAZ Technical Reference

__

INDEX_ON procedure INDEX4

Purpose: Builds a primary index file for the currently active database based on a key string computed
by a user-defined function.

Declaration: INDEX_ON(KeyFunction : Pointer; IndexFileName
: String);

Parameter: KeyFunction is a pointer to a user-defined function that returns a key string (normally based
on the fields of the user-database record). IndexFileName is the name of the index file that will
be created. The default file extension is .IND.

Notes: This procedure calls a function written by the programmer which returns the key string for the
current database record. The user-defined function must be declared FAR. Keys generated
must be of type String, must not exceed 100 characters, and must have a consistent length.
INDEX_ON first closes all indexes that are open in the current work area, then leaves the
index open and sets the database record pointer to the first index entry.

The programmer should be aware of the seven rules for index key functions:

1. Key functions must return a string.

2. Strings returned must be from 1 to 100 chars in length.

3. Strings returned must be a consistent length (i.e., for a given key function, any call to that
function will always return the same length string). Failure of the key function to do this will
cause a TOPAZ error.

4. Key functions must always be declared FAR.

5. Key functions may not be nested in another procedure or function.

6. Key functions should only generate keys. They should not reposition any databases or alter
fields or other variables.

7. Avoid a key that results in duplicate values. Unique key values will result in much faster
indexing, FINDs and SKIPs. You can eliminate duplicate keys by adding the record number
to the key in your key maker function.

Duplicate Keys and Natural Order: When an index is created, duplicate keys will be indexed
in the order that they were entered into the database. Sometimes it is desirable to maintain this
"natural" order after the file is indexed and key fields are modified. This can be achieved by
simply adding the record number to the index key.

 TOPAZ Technical Reference 325

INDEX_ON supports three optional clauses with the filename:

NOCACHE By default, INDEX_ON dynamically assigns approximately 30K of
memory (if available) as a cache. In situations where memory is at a
premium, the programmer can specify that no cache be allocated by using
the NOCACHE clause after the index file name.

DESCENDING By default, INDEX_ON indexes in order of ascending keys (from lesser
to greater). By specifying the DESCENDING clause, the programmer
can cause INDEX_ON to index in descending order (from greater to
lesser).

 SOUNDEX This alternate indexing scheme orders keys by their phonetic sounds.
This is useful when indexing names that are to be retreived by prompting
the end-user (see the section "Indexing Databases" in the Tutorial part of
this manual).

While indexing, a counter is displayed and updated on the screen. The display of this counter
can be disabled with a call to Set_Odometer_Off.

See MakeIndex, SET_INDEX_TO, SET_ORDER_TO, FIND, Set_Odometer_On/Off.

Example 1: {$F+}
function CustomerKey : String; {The "KeyFunction"}
begin
 CustomerKey := UPPER(Customer._Name)+Customer._Territory;
end;
{$F-}

begin {main program}
 USE('customer',@customer,SizeOf(customer));
 INDEX_ON(@CustomerKey, 'CustName');
 {Create an index file, CUSTNAME.IND, that orders the records in the
datafile CUSTOMER.DBF according to a key consisting of the field
"Customer.Name" converted to upper case,
 concatenated with the string field Customer.Territory.}
 .
 .
end.

{to avoid duplicate keys and improve index performance, the keymaker
function can "tack on" the record number to the key:

function CustomerKey : String; {The "KeyFunction"}
begin
 CustomerKey := UPPER(Customer._Name) +

Customer._Territory + SInteger(RecNo,6);
end;

{to suppress the use of a 30K cache, the index can be created with the
NOCACHE clause:}
INDEX_ON(@CustomerKey, 'CustName NOCACHE');

Example 2: INDEX_ON(@CustomerKey, 'CustName SOUNDEX');

 326 TOPAZ Technical Reference

Example 3: INDEX_ON(@BirthDate, 'BDate DESCENDING');

 TOPAZ Technical Reference 327

__

InHours function TIMEDATE

Purpose: Returns the specified time as a real number of hours.

Declaration: InHours(Time : TimeType) : Real;

Parameter: Time is the specified time in 'hh:mm:ss' format.

Notes: See InSeconds, InMinutes, TIME. See the demo program TD-DEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s).

Example: HoursWorked := InHours('08:35:30');
{sets HoursWorked to 8.5917}
HoursSinceMidnight := InHours(SystemTime);

__

InMinutes function TIMEDATE

Purpose: Returns a specified time as a real number of minutes.

Declaration: InMinutes(Time : TimeType) : Real;

Parameter: Time is the specified time in 'hh:mm:ss' format.

Notes: See InSeconds, InHours, TIME. See the demo program TD-DEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s).

Example: MinutesWaited := InMinutes('01:17:45');
{sets MinutesWaited to 77.75}

 328 TOPAZ Technical Reference

__

InSeconds function TIMEDATE

Purpose: Returns a specified time as a real number of seconds.

Declaration: InSeconds(Time : TimeType) : Real;

Parameter: Time is the specified time in 'hh:mm:ss' format.

Notes: See InHours, InMinutes, TIME. See the demo program TD-DEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s).

Example: SecondsToGo := InSeconds('02:12:07');
{sets SecondsToGo to 7927}

 TOPAZ Technical Reference 329

__

InsertRec procedure VFILES

Purpose: Adds a new record to the currently selected Virtual File just after the current record.

Declaration: InsertRec;

Notes: The InsertRec procedure will insert a record immediately after the current record, regardless
of the current Virtual File "Mode". Therefore, InsertRec is exactly like using
Set_VFilesMode_To (INSERTION), then PushRec or APPEND, and then restoring the prior
VFiles mode. After the InsertRec is finished, the current record is the record that was just
inserted.

InsertRec follows the dBASE convention of adding a record after the current record. See
Example 2 if you wish to insert a record at the top of the virtual file.

While it is possible to have an index active on a virtual file, you should not use InsertRec on
an indexed virtual file. The index routines don't get called by InsertRec and the index file will
be corrupted.

See PushRec, PopRec, APPEND, Set_VFilesMode_To.

Example 1: {Insert a new record to the customer virtual file, just after the
current record:}
Customer._CODE := 'ABC123';
Customer._CREDIT := 1000;
InsertRec;

Example 2: {Insert a record at the top of the customer virtual file:}
Set_VFilesMode_To(LIFO);
APPEND; {in place of InsertRec}

 330 TOPAZ Technical Reference

__

IntegerVal function SAYGET4

Purpose: Returns an integer value of the string passed to it. String parameter must not be longer than
8 characters. The string can contain spaces or non-numeric characters.

Declaration: IntegerVal(S : String) : Integer;

Parameter: S is the string representation of the integer.

Example: if s = ' 1234 ' then
i := IntegerVal(s); would set i = 1234.
However, if s = ' 12 34 'or s = '12three' then
i := IntegerVal(s); will set i to the value 12.

 TOPAZ Technical Reference 331

__

InTicks function TIMEDATE

Purpose: Returns a specified time in a real number of ticks of the system clock, where 1 second equals
18.2065 ticks.

Declaration: InTicks(Time : TimeType) : Real;

Parameter: Time is the specified time in 'hh:mm:ss' format.

Notes: See InHours, InMinutes, InSeconds, TIME. See the demo program TD-DEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s).

 332 TOPAZ Technical Reference

__

IPL procedure TZUTILS

Purpose: Reboots the computer.

Declaration: IPL;

Notes: Certain rare applications will want to reboot the computer under program control. IPL
("Initial Program Load") does a warm boot of the computer when it is called. Be careful to
close all files prior to calling IPL. Calling IPL is identical to pressing <Ctrl>-<Alt>-.

Example: {In a certain application, is it desired to reboot if an incorrect
password is entered:}
SayGet(10,10,'Enter Password: ',password,_Password,8,1); PICTURE('@!');
ReadGets;
if Password <> 'FOOBAR' then
 begin
 CloseDataBases; {shut down the system first!}
 IPL; {reboot}
 end;

 TOPAZ Technical Reference 333

__

IsAlpha function SAYGET4

Purpose: Returns True if the first character of a string is an alphabetic character, false otherwise.

Declaration: IsAlpha (S : String) : Boolean;

Parameter: S is the string that is to be evaluated.

Example: if not IsAlpha(_LASTNAME) then
WriteLn('Names must start with letters!');

 334 TOPAZ Technical Reference

__

IsCenterButtonDown function TZCOMMON

Purpose: Returns whether the Mouse <Center-Button> is currently being pressed.

Declaration: IsCenterButtonDown : Boolean;

Notes: Once a target is detected and returned by GetEvent, IsCenterButtonDown provides a means
for the program to determine the continuing state of the button.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call IsCenterButtonDown since TOPAZ automatically calls it when appropriate.

Example: AddTarget(1,1,5,5,1,CenterButtonDown);
EnableMouse;
repeat
 GetEvent(e);
until (e.WhichEvent = Mouse) and (e.TargetID = 1);
while IsCenterButtonDown do
 begin
 ... {do some task as long as the user has the button down}
 end;

 TOPAZ Technical Reference 335

__

ISCOLOR function VIDPOP

Purpose: Returns True if the system is using a color adapter (CGA/EGA/VGA), or False if the system
is monochrome. This function may be used to detect the basic type of video card in use and
set display attributes accordingly.

Declaration: ISCOLOR : Boolean;

Notes: The default colors for all TOPAZ routines are monochrome (i.e., LightGray, White, and
Black). A single call to ISCOLOR during the initialization of an application can be used to
determine whether attributes can be set to color.

If the current video mode is not monochrome (7) then IsColor tests the VideoCard function
and returns True only if the system has a color display. Thus if the current system has an
EGA, VGA, or MCGA video card in a color mode but is connected to a monochrome monitor,
IsColor will return False.

See VideoMode.

Example: if ISCOLOR then
begin
 SET_COLOR_TO(Cyan, Blue, Black, Cyan);
 Set_Highlight_To(White, Green);
 Set_Pick_Color_To(Black, Green, Yellow, Black);
 Set_Browse_Color_To(Black, Red, Red, Black, Cyan, Blue);
 .
 .
 .
end;

 336 TOPAZ Technical Reference

__

IsLeftButtonDown function TZCOMMON

Purpose: Returns whether the Mouse <Left-Button> is currently being pressed.

Declaration: IsLeftButtonDown : Boolean;

Notes: Once a target is detected and returned by GetEvent, IsLeftButtonDown provides a means for
the program to determine the continuing state of the button.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call IsLeftButtonDown or ShowMouse since TOPAZ automatically calls it when
appropriate.

Example: AddTarget(1,1,5,5,1,LeftButtonDown);
EnableMouse;
repeat
 GetEvent(e);
until (e.WhichEvent = Mouse) and (e.TargetID = 1);
while IsLeftButtonDown do
 begin
 ... {do some task while the button is pressed down}
 end;

 TOPAZ Technical Reference 337

__

IsLower function SAYGET4

Purpose: Returns True if the first character of a string is a lower case letter.

Declaration: IsLower (S : String) : Boolean;

Parameter: S is the string that is to be evaluated.

Example: if IsLower(_LASTNAME) then
WriteLn('Names must start with capital letters!');

__

IsUpper function SAYGET4

Purpose: Determine if the first character of a string is a capital letter.

Declaration: IsUpper (S : String) : Boolean;

Parameter: S is the string that is to be evaluated.

Example: if not IsUpper(_LASTNAME) then
WriteLn('Names must start with a capital letter!');

 338 TOPAZ Technical Reference

__

IsRightButtonDown function TZCOMMON

Purpose: Returns whether the Mouse <Right-Button> is currently being pressed.

Declaration: IsRightButtonDown : Boolean;

Notes: Once a target is detected and returned by GetEvent, IsRightButtonDown provides a means
for the program to determine the continuing state of the button.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call IsRightButtonDown since TOPAZ automatically calls it when appropriate.

Example: AddTarget(1,1,5,5,1,RightButtonDown);
EnableMouse;
repeat
 GetEvent(e);
until (e.WhichEvent = Mouse) and (e.TargetID = 1);
while IsRightButtonDown do
 begin
 ... {do some task while the button is pressed down }
 end;

 TOPAZ Technical Reference 339

__

JulianFromDate function TIMEDATE

Purpose: Returns the Julian date from a TOPAZ date string.

Declaration: JulianFromDate(Date : String10) : LongInt;

Parameter: Date is a TOPAZ date string in the current date format.

Notes: An error (invalid parameter) is generated if date is invalid. January 1 of year 1 A.D. is thest

Julian Day 1,721,424.

Although TOPAZ provides a full range of date math routines that do not require the
programmer to convert to or from Julian representations, applications may be optimized in
disk space and speed by storing dates as Julian LongInts. This function facilitates that
capability. See DateFromJulian.

 340 TOPAZ Technical Reference

__

LetterDate function TIMEDATE

Purpose: Returns a date in a format customarily used in the header of a business letter.

Declaration: LetterDate(Date : String10) : String;

Parameter: Date is a TOPAZ formatted date.

Notes: The format of a date field, MM/DD/YY, is not ordinarily acceptable when printing the date
on a business letter. The TOPAZ function FullDate returns a fully spelled out date, including
the name of the day of the week. This also is not conventional. The function LetterDate,
however, solves this problem. See FullDate.

Example: WriteLn(alternate, LetterDate('11/07/92'));
{prints November 7, 1992}

 TOPAZ Technical Reference 341

__

LibScreenName function VIDPOP

Purpose: Allows the directory of the specified disk-based screen library to be interrogated to determine
the names of the screens.

Declaration: LibScreenName(WhichLib, ScreenNo : Byte) : String8;

Parameters: Whichlib is the logical library number established when the library was opened. ScreenNo
is the number of a screen in the library.

Notes: This procedure is useful when you do not know the names of the screens in a library.

Example: ScreenName := LibScreenName(1,counter);

 342 TOPAZ Technical Reference

__

LIST procedure DBF4

Purpose: Reports database records to the screen or the Alternate output device.

Declaration: LIST(Command : String);

Parameter: The currently recognized clauses are:

OFF means supress the record number display
NEXT <n> means display the next n records

Notes: The LIST procedure works like the dBASE LIST. The recognized clauses are OFF and
NEXT nnn. LIST starts at the current record and lists records to the screen (the default). If
you have SET_ALTERNATE_ON or SET_PRINT_ON (or any combination, of course) the
output will go to those devices. If there is no DBF selected, or there are no records, LIST just
returns (no error is generated).

Example: USE('MyData', NIL, 0);
LIST('OFF NEXT 15');

 TOPAZ Technical Reference 343

__

ListSpoolData procedure SPOOLER

Purpose: Displays the current configuration and status of the spooler.

Declaration: ListSpoolData;

Notes: Sample display resulting from ListSpoolData:

Print Spooler Status

Spooler installed = TRUE
Printer port = LPT1
Printer = Parallel
Spooler enabled = TRUE
Spooler buffer size = 8192
Spooler packet size = 32
Characters in buffer = 7808

 344 TOPAZ Technical Reference

__

LoadColorMap procedure TZUTILS

Purpose: Reads a color-map file from disk and causes it to be used for all subsequent color
mappings.

Declaration: LoadColorMap(FileName : PathStr);

Parameter: Filename should be the name of a valid color-map file created with
COLORMAP.EXE or a hex or binary file editor. The size of the file should be 128
bytes.

Notes: When LoadColorMap is called it will allocate a 128 byte buffer from the heap,
open the color-map file, and read it into the buffer. Upon success it will then call
Set_ColorMap_To (@Buffer) where Buffer is a pointer to the newly allocated
memory where the color-map data now resides. To recover the memory used by the
color map you may call LoadColorMap('').

See Set_ColorMap_To.

Example: {to load a color map called BLUECYAN.MAP:}
LoadColorMap('BLUECYAN.MAP');

 TOPAZ Technical Reference 345

__

LoadScreenGets procedure SCRENGET

Purpose: Allocates memory necessary for data entry of fields embedded in a SAYWHAT?! data entry
screen.

Declaration: LoadScreenGets(ScreenName : String10;
 MemoryLoc : Pointer;
 LibraryNo : Byte);

Parameters: ScreenName identifies the SAYWHAT?! data entry screen. Typically, it is the name of the
SQZ file that is to be displayed, and must match the ScreenName specified in the following
call to DoScreenGets.

MemoryLoc and LibraryNo are used to identify the source of the SAYWHAT?! screen that
contains the field information, according to the following table:

MemoryLoc LibraryNo Source of Field Information

Nil 0 Disk file named ScreenName (with default
extension SQZ)

Nil n Disk file screen library that has been
opened in area "n" with the OpenLibrary
procedure

Address 0 Memory location where the SAYWHAT?!
screen in stored (screen that has
been linked into your program or
loaded onto the heap using a call
to PopScreen)

Address n Memory location where SAYWHAT?!
screen library is stored (library
that has been linked into your
program or loaded onto the heap,
using a call to PopLibMem)

Notes: This procedure must be called prior to any call to DoScreenGets that references the same
SAYWHAT?! data entry screen. A recommended practice is to LoadScreenGets for each
data entry screen during program initialization. Any data file referred to in the SAYWHAT?!
data entry screen must already have been opened with USE. This procedure, however, does
not display the screen. Your program must display the screen (with calls to PopScreen,
PopSqz, PopLibMem, as appropriate) and then call DoScreenGets to actually edit the data
fields. When your program is finished using a screen and it's data fields, the ClearScreenGets
procedure can be called to release the memory occupied by this screen's data field information.

 346 TOPAZ Technical Reference

Example: {Open all files referred to in SAYWHAT?! data entry screens}
USE('customer', Nil, 0);

{load data entry field info into memory}
LoadScreenGets('customer', Nil, 0);

SELECT(0);
USE('transact', Nil, 0);
LoadScreenGets('transact', Nil, 0);

{later in the program, we are free to pop up the screens and do data
entry}

PopSqz('customer');
DoScreenGets('customer', EditMode, Nil);

{or}

PopSqz('transact');
DoScreenGets('transact', DisplayMode, Nil);

 TOPAZ Technical Reference 347

__

LOCATE procedure TZUTILS

Purpose: Searches the specified field of the currently selected database for a specified match, beginning
with the first physical record and proceeding in physical order until a match is found or end
of file is reached.

Declaration: LOCATE(FieldName : String; Var FieldValue);

Parameters: FieldName is the dBASE name of the field to be searched, and may contain the following
optional clauses:

NOCASE match is case insensitive
EXACT must match in both characters and length
CONTAINED match found anywhere in field

FieldValue is the data to be matched. Since FieldValue is passed by reference, it cannot be
a literal.

Notes: LOCATE positions the database on the record of the match. If no match is found, the
database is positioned beyond end of file (i.e., the TOPAZ dEOF function will return True).
The CONTINUE command may be used to search for additional records that satisfy the same
conditions. See CONTINUE. If the search field is a memo field, LOCATE will automatically
open and search memos for containment of the specified string, and ignores the clauses
EXACT and CONTAINED. LOCATE does not respect filters or indexes or differentiate
between deleted and non-deleted records.

Example 1: Co := 'Acme Plating';
LOCATE('company', co);

Example 2: Co := 'Acme Plating';
LOCATE('company NOCASE', co);

Example 3: Co := 'Acme Plating';
LOCATE('company NOCASE CONTAINED', co);

Example 4: Amount := 123.45;
LOCATE('BalanceDue', Amount);

Example 5: Match := 'hot prospect'; {search memo field NOTES for
LOCATE('notes NOCASE', match); the words "Hot Prospect"}

 348 TOPAZ Technical Reference

__

LockUnLock function DBF4/NET

Purpose: A low-level method of locking non-Topaz files.

Declaration: LockUnLock(Mode : Byte; Handle : Word;
Offset, Size : LongInt) : Word;

Notes: With this routine you can either lock or unlock all or portions of files. The parameter Mode
must have a value of either zero or one where: 0 = lock and 1 = unlock.
This routine can be used to lock and unlock any open file whose DOS file handle you have
access to. In Turbo Pascal file variables, the first word (2 bytes) of the filevar is the handle.
To lock a record in a file that is not a DBF you should call this function with a zero for the
Mode, the file handle, the byte offset of the data to be locked, and the number of bytes to lock.
To unlock, you must call the same function with exactly the same parameter values except that
the Mode should be 1. A non-zero return value means that the lock or unlock attempt failed.
This routine is affected by the DOS retry value but not the Topaz Set_Retry_To value.

Return values: 0 = success
 1 = no network software running
 6 = invalid handle
33 = lock violation (already locked)
36 = sharing buffer exceeded

IMPORTANT: Do not attempt to use this routine to lock or unlock a file or records in a file
that has been opened by Topaz. Also do not use this routine on files that reside on a
non-shared local drive.

Due to the fact that Turbo Pascal always opens text files with a non-sharable file mode,
LockUnLock cannot be used on files of type TEXT without special handling involving
writing a special text file device-driver.

 TOPAZ Technical Reference 349

Example: procedure UpdateConfigurationFile; {lock configuration file}
var F : File of ConfigRecord;
 Handle : Word Absolute f;
 Data : ConfigRecord;

begin
 FileMode := $42; { sharable read/write }
 assign(f,'MYPROG.CFG');
 Reset(F);
 Read(F,Data);
 Inc(Data.TotalValidUsers);
 SEEK(F,0);
 {lock the file}
 if LockUnLock(0,Handle,0,10) = 0 then
 begin
 Write(F,Data);
 {unlock after writing}
 if LockUnLock(1,Handle,0,10) <> 0 then

begin
{ error unlocking file }
end;

 end;
 Close(f);
end;

 350 TOPAZ Technical Reference

__

LongVal function SAYGET4

Purpose: Given a string representation of a number, LongVal returns a number of type LongInt.

Declaration: LongVal(Number_Str : String) : LongInt;

Parameter: Number_Str is a number represented as a string.

Notes: This function is identical to IntegerVal except that it returns a result of type LongInt.

Example: x := LongVal('$1,234,567');
{assigns 1234567 to the LongInt var x}

 TOPAZ Technical Reference 351

__

LOWER function SAYGET4

Purpose: Returns a copy of the parameter string converted to lowercase. Only the characters 'A' through
'Z' and the "Umlaut" chars (Ä, Ö, Ü) are affected.

Declaration: LOWER(S : String) : String;

Parameter: The parameter S is the string before being LOWERed.

Notes: LOWER will lower case any umlaut or accented characters that have lower case equivalents.

Example: z := LOWER(name);

 352 TOPAZ Technical Reference

__

LTRIM function SAYGET4

Purpose: Returns a string with leading spaces removed.

Declaration: LTRIM(S : String) :String;

Parameter: The parameter S is the string before being trimmed.

Notes: See TRIM.

Example: z := LTRIM(' abcde');
{will return a string, z, with the value: 'abcde'}

 TOPAZ Technical Reference 353

__

LUPDATE function DBF4

Purpose: Returns the date of the last update for the currently selected database.

Declaration: LUPDATE : String;

Example: WriteLn('File last written to on ',LUPDATE);
{output: "File last written to on 12/29/88"}

 354 TOPAZ Technical Reference

__

MakeIndex procedure INDEX4

Purpose: Creates an index file without disturbing the currently active database or its indexes. When
MakeIndex returns, an index file will have been written to disk, and the current DBF will
remain open and positioned with the same indexes as when the call was made.

Declaration: MakeIndex(KeyMakerPtr : Pointer; Filename : String);

Parameters: KeyMakerPtr is a pointer to a user-defined key maker function. Filename is the name of the
index file to be created. The default file extension is .IND.

Notes: An error will be generated if the user attempts to make an index with a filename of an index
that is already open. The clause "NOCACHE" will have no effect. The clauses
DESCENDING and SOUNDEX will create indexes as described in the section "Indexing
Databases" in the Tutorial part of this manual and under INDEX_ON.

While indexing, a counter is displayed and updated on the screen. The display of this counter
can be disabled with a call to Set_Odometer_Off.

See also Set_Odometer_On/Off, SET_INDEX_TO, and INDEX_ON.

Example: {while the customer database is open and indexed by customer name,

create a new index with ZIP code as the key. Do not disturb the customer
database while doing so.}

USE('customer', @customer, SizeOf(customer));
MakeIndex(@ZipKey, 'custzip');
SET_INDEX_TO(@NameKey, 'customer',1);

 TOPAZ Technical Reference 355

__

MaxAvailRows function VIDPOP

Purpose: Returns the current number of screen rows from information stored in the BIOS data area.
Most video cards will update the BIOS data area at address $40:$84 with the number of rows
minus one.

Declaration: MaxAvailRows : Byte;

Notes: This function is useful when using a video system that supports multiple modes and can be
switched from 25 rows to 43 or 50 rows.

Example: { go to the last row on the screen }
GotoXY(1,MaxAvailRows);

 356 TOPAZ Technical Reference

__

MaxPageLines function TZPRINT

Purpose: Returns the largest row coordinate which has been used with AtPrint to send text to the
current page buffer.

Declaration: MaxPageLines : Integer;

Notes: The AtPrint procedure permits the programmer to create a page image with random access
to rows and columns on the page. MaxPageLines will return the total number of rows
currently necessary to print the entire data written to the page image. See PageLine, AtPrint.

Example: {display the contents of the page image on the screen}
for i := 1 to MaxPageLines do WriteLn(PageLine(i));

 TOPAZ Technical Reference 357

__

MemLibScreenName function VIDPOP

Purpose: Used to interrogate the header of a linked screen library and determine the name of the nth
screen in the library.

Declaration: MemLibScreenName(PtrToLib : Pointer;
 WhichScreen : Byte) : String8;

Parameters: PtrToLib must be a pointer to the library data in memory. WhichScreen should be a number
from 1 to the total number of screens in the library.

Notes: This procedure is useful when you need to access a library but do not know the names of the
screens contained in it. If there is no screen which corresponds to the number requested, the
function will return an empty string.

Example: counter := 1;
repeat { display all screens without knowing their names }
 ScreenName := MemLibScreenName(@library,Counter);
 if length(ScreenName) > 0 then
 PopLibMem(@library,ScreenName);
 inc(counter);
until (length(ScreenName) = 0) or (counter > 100);

 358 TOPAZ Technical Reference

__

Menu procedure DIALOG

Purpose: Permits the programmer to invoke a horizontal or vertical moving bar menu that is
automatically centered, or positioned anywhere on the screen.

Declaration: Menu (MenuChoices : String);

Parameters: MenuChoices is a string containing the choices to be displayed in the menu area.

Notes: Menus will appear centered on the screen, unless another location has been set by
Set_MenuWindow_To, and will automatically save and restore any underlying screen. If
MenuChoices is a string of single word choices separated by spaces, the resulting menu will
be horizontal (see Example 1). If MenuChoices is a string of choices separated by semicolons
(;), the menu will be vertical (see Example 2). This character is the default value of the global
char MenuSeparatorChar (see discussion below). Trigger keys (keystrokes other than the first
letter of the choice) can be specified by enclosing the desired key in square brackets (see
Example 3).

Menu colors are determined by the last call to the Set_Menu_Color_To procedure. The
default colors are the "SAY" and "GET" colors as set by SET_COLOR_TO. The menu area
will appear in the "SAY" color, and the moving bar will appear in the "GET" color. Trigger
keys, if specified, will appear in the color set by Set_Highlight_To. See Example 4.

Leading blanks will indent menu choices. Multiple separator characters (semicolons) will
force blank lines in vertical menus. See Example 5.

There are two Global Variables used by the Menu procedure: MenuSeparatorChar and
MenuMargin. MenuSeparatorChar is used to declare the character used to separate menu
strings in a vertical moving bar menu. By default, this character is a semicolon (;).
MenuMargin indicates the number of blank characters between the moving bar and the box
around the menu choices. By default, this value is zero.

Menu sets the values of the global variables MenuChoice, MenuChar, and MenuString.
Inspection of any of these variables after the call to Menu permits the programmer to
determine what action the end-user took.

There are three clauses recognized by Menu:

CENTERTEXT causes the menu choices to be centered in the menu box.

HEADING = "..." defines a heading that will appear in the top of the menu box. It will
temporarily supercede the heading set with the Set_MenuWindow_To
command.

 TOPAZ Technical Reference 359

STAYON Normally, the Menu procedure handles saving and restoring the
underlying screen. By specifying STAYON in the MenuChoices
string, it is up to the programmer to restore the screen after a call to
menu (by calling RemoveMenu, or another call to Menu is made).

The save-and-restore feature of Menu can be disabled entirely by
setting the global boolean LeaveMenusDisplayed to True. It is then
up to the programmer to manage saving and restoring screen images.

See Set_MenuWindow_To, Set_Menu_Color_To, CreateMenu, and the Tutorial section
"Moving-Bar Menus" in this manual.

Example 1: {horizontal menu}
Menu ('Add Edit Delete Quit');
case MenuChoice of
.
.

Example 2: {vertical menu}
Menu ('Add;Edit;Delete;Quit');
case MenuChoice of
.
.

Example 3: {specify and highlight "trigger" keys}
Set_Highlight_To (Yellow, Black);
Menu ('[A]dd A[l]ter A[p]pend');
{will cause letters in brackets to be in the highlight color (without
the brackets)}

Example 4: {specify and highlight "trigger" keys}
Set_Highlight_To (Yellow, Black);
Menu ('[[A]]dd A[[l]]ter A[[p]]pend');

{The example above will cause the letters in brackets to be in the
highlight color within a set of single brackets. This feature might be
useful if you are programming for a screen that doesn't show highlights
well.}

Example 5: {setting colors}
Set_Menu_Color_To (Yellow, Blue, White, Blue);
Menu ('Add Edit Delete Quit');
{Since there was no call to the Set_MenuWindow_To routine, the menu
created will be centered on the screen, vertically and horizontally.}

Example 6: {setting menu position, box style and heading string}
Set_MenuWindow_To (10, 10, SingleLine+Explode+Shadow,

'Your Choices:')
Menu('Add Edit Quit');

{In the above example, the upper left corner of the menu box will be in
column 10 of row 10.}

Example 7: {setting menu position, box style and heading string}

 360 TOPAZ Technical Reference

Set_MenuWindow_To (10, 255, SingleLine+Shadow,'Your Choices:')
Menu('Add Edit Quit');

{In the above example, the menu created will be centered on the screen
(from top to bottom), and the left side of the menu will be in column
10.}

Example 8: {a more complex example illustrating several features}
Set_Menu_Color_To (Yellow, Blue, White, Blue);
MenuSeparatorChar := '/';
MenuMargin := 2;
Set_MenuWindow_To (255, 10, SingleLine, '');
Menu ('/[A]dd New Records/[E]dit Current Record/[Q]uit/'

+ ' CENTERTEXT HEADING="What Next"');
 case MenuChar of

'A' : AddRecord;
'E' : EditRecord;
'Q' : Halt;

 end;

 TOPAZ Technical Reference 361

The above Menu command will create a menu that looks like this:

+)))))) What Next)))))),
* * 7 Blank line
* Add New Records *
* Edit Current Record *
* Quit *
* * 7 Blank Line
.)))))))))))))))))))))))-
 88 88 MenuMargin = 2

In the above example, the moving bar will extend 1 character beyond the longest string ('Edit
Current Record'). The bar will be the same size on all records. Also, the first letter of each
menu choice will be highlighted (the "A", "E" and "Q"). The first and last "Blank Line" are
a result of the leading and trailing /'s (the MenuSeparatorChar) in the MenuChoices string.
As a result of the call to Set_MenuWindow_To in the example above, the menu created will
be centered on the screen (from left to right) and the top of the menu will be in row 10.

 362 TOPAZ Technical Reference

__

MESSAGE function TZCOMMON

Purpose: Returns the contents of the error message buffer. This buffer is filled whenever an error has
occurred and has been trapped by one of the TOPAZ units. The message buffer is cleared
each time the function is called.

Declaration: MESSAGE : String;

Notes: The function can be used when Set_AutoHalt_Off is called. See the example code in

ONERROR.INC archived in the SAMPLES.ZIP file on the TOPAZ distribution disk(s).

See Set_AutoHalt_Off.

Example: Set Autohalt_Off;
USE('myfile', @myfile, SizeOf(myfile));
if DbfError <>0 then
 begin
 WriteLn(MESSAGE);
 halt;
 end;

 TOPAZ Technical Reference 363

__

MONTH function TIMEDATE

Purpose: Returns the numeric month given a specified date.

Declaration: MONTH(Date : String10) : Byte;

Parameter: Date is in 'MM/DD/YY' or 'MM/DD/YYYY' format.

Notes: January = 1, February = 2, .. December = 12

 364 TOPAZ Technical Reference

__

MouseX function TZCOMMON

Purpose: Returns the current absolute column position of the Mouse.

Declaration: MouseX : Byte;

Notes: Unless the programmer wants to add additional Mouse support it is normally not necessary
to call MouseX since TOPAZ automatically calls it when appropriate.

__

MouseY function TZCOMMON

Purpose: Returns the current absolute column position of the Mouse.

Declaration: MouseY : Byte;

Notes: Unless the programmer wants to add additional Mouse support it is normally not necessary
to call MouseY since TOPAZ automatically calls them when appropriate.

 TOPAZ Technical Reference 365

__

NDX function INDEX4

Purpose: Returns a character string consisting of the full path and name of the index file of a specified
order for the currently selected database file.

Declaration: NDX(Order : Byte) : String;

Parameters: Order is a number from 1 to 16 specifying the order of the index.

Notes: NDX works like the dBASE NDX function. If no database is open in the current area, or no
index is open with the given order, NDX returns an empty string.

Example: WriteLn('The currently open database is ',DBF,
'and the filename of the primary index is ',NDX(1));

 366 TOPAZ Technical Reference

__

NetworkFound function DBF4/NET

Purpose: Determines if the work-station is connected to a network.

Declaration: NetworkFound : Boolean;

Notes: Returns True if any MS-NET or compatible, or Novell Netware network is found. If your
program is compiled with TOPAZ Single-User units it always return False.

Example: if NetworkFound then
 if DriveIsRemote(0) then
 TzCommon.MultiUser := True;

 TOPAZ Technical Reference 367

__

NoEdit procedure SAYGET4

Purpose: Inhibits editing a data entry field displayed by a SayGet during an active ReadGETs.

Declaration: Noedit;

Notes: This is a SayGet modifier and is called just the same way REQUIRED is called after a call to
SayGet. Such fields will be displayed in GET colors but the cursor will jump over the field
in a ReadGets session, and any autohelp or validation routines will not be called.

Example: SayGet(10,11,'Client Code: ',_CLIENT, _S, 4, 0);
NoEdit;
SayGet(10,12,'Name: ',_NAME, _S, 24, 0);
SayGet(10,13,'Phone: ',_PHONE, _S, 8, 0);
PICTURE('999-9999');
ReadGets; {editing will occur on _NAME and _PHONE field, but not

on _CLIENT}

 368 TOPAZ Technical Reference

__

NotErased function DBF4

Purpose: Permits the application to determine which files failed to be deleted after a call to EraseFile
when wildcard file names have been specified.

Declaration: NotErased(var S : SearchRec) : Boolean;

Notes: When the TOPAZ routine EraseFile is called with a filename that does not contain wildcards,
a failure to delete the file will cause a TOPAZ error. When EraseFile is called with a
wildcard specifier, however, TOPAZ will attempt to delete as many of the files that match the
wildcard specification and provides a mechanism for the calling program to determine which
files failed to be deleted. NotErased is the interface to that mechanism.

If any of the files could not be deleted (perhaps because another user had the file open) a
TOPAZ error will result only after attempting to delete all files which match the wildcard. By
calling SET_AUTOHALT_OFF prior to EraseFile the application can inspect the value of
DbfError to determine whether one or more files failed to be deleted. The application
program can find out exactly which files failed to be erased by a call to the Boolean function
NotErased. NotErased returns False if all files were deleted (and DbfError will be zero,
too). If True, the parameter will be assigned the value of a SearchRec which contains
information about the file that was not erased. Every time you call NotErased it returns
another file that was not erased, until it returns False. It is not mandatory, however, for the
programmer to call NotErased since the next call to EraseFile will deallocate the linked list
that NotErased is based on. See EraseFile.

Example: uses dos, dbf4;
var Temp : SearchRec;
begin
 Set_AutoHalt_Off; { don't auto halt }
 EraseFile('b:*.bak');
 Set_AutoHalt_On;
 {determine which files were not erased, if any...}
 while NotErased(Temp) do
 WriteLn(Temp.Name,' was not erased!');
end.

 TOPAZ Technical Reference 369

__

OnDoubleClick procedure TZCOMMON

Purpose: Permits a user-defined procedure to be invoked when the user double clicks the Mouse <Left-

Button> on a SayGet field while ReadGets is active.

Declaration: OnDoubleClick(HandlerPtr : Pointer);

Parameters: HandlerPtr must be either Nil or an address to a Far procedure which requires no parameters.

Notes: Typically used to pop up a PickList or nested edit session based on a user double clicking on
a particular edit field.

Example: { pop up the memo editor when the user double clicks on a memo field}

procedure DoubleClickHandler; Far;
begin
 if SGFieldCode = 2 then

 EditMemo(MyFile._MemoField,'');
end;

begin
 OnDoubleClick(@DoubleClickHandler);
 SayGet(10,10,' Name: ',MyFile._Name,_S,33,0);
 SayGet(10,11,'Notes: ',MyFile._MemoField,_M,5,0);
 ReadGets;
 if EditResult < 1 then
 Replace;
 OnDoubleClick(Nil);
end;

 370 TOPAZ Technical Reference

__

OnMouse procedure TZCOMMON

Purpose: Permits viewing, filtering, and modification of Mouse events by a user-defined procedure
before they are delivered to the requesting routine.

Declaration: OnMouse(MouseHandlerPtr : Pointer);

Parameters: MouseHandlerPtr must be either Nil or the address of a Far procedure which requires no
parameters.

Notes: OnMouse allows the programmer to add Mouse-sensitive areas to BROWSE and
SayGet/ReadGets editing sessions. By adding one or more targets with AddTarget and then
specifying an OnMouse event handler the programmer may add buttons and other Mouse
sensitive areas outside of the BROWSE window or in addition to the targets created by SayGet
fields. See the sample program PHONE.PAS in the PHONE.ZIP file.

Example: { add Save and Cancel buttons to a data entry screen: }
procedure HandleButtons; Far;
begin
 case Event.TargetID of
 1 : begin {change event to a <PgDn> to exit editing}
 Event.WhichEvent := Keyboard;
 Event.Key := #0;
 Event.ScanCode := Byte('Q'); { PgDn }
 end;
 2 : begin {change event to <Esc> key press to abandon edit}
 Event.WhichEvent := Keyboard;
 Event.Key := #27;
 Event.ScanCode := 0;
 end;
 end;
end;

begin { data entry routine }
 At(10,20,'Save');

 At(30,20,'Cancel');
 AddTarget(10,20,13,20,1,LeftButtonReleased);
 AddTarget(30,20,35,20,2,LeftButtonReleased);
 OnMouse(@HandleButtons);
 SayGet(10,10,'Name: ',Name,_S,33,0);
 SayGet(10,11,'Address: ',Address,_S,33,0);
 ReadGets;
 if EditResult < 1 then Replace;
 OnMouse(nil); { ReadGets will call DisableMouse which will dispose

all active Mouse targets }
end;

 TOPAZ Technical Reference 371

__

OpenDBF procedure TZDBFLOW

Purpose: Opens a dBASE file of "unknown" structure. No Pascal record matching the structure of the
file need be defined in advance. Since OpenDBF is a low level command, no workarea is
occupied and high level TOPAZ commands will have no effect on this file.

Declaration: OpenDBF(var R : DBFRecord);

Parameter: Filename to open is passed as R.filename (including extension), which must be set before
calling OpenDBF.

Notes: This is a low level TOPAZ command. High level commands such as SELECT, SKIP, etc. have
no effect on files opened with this command. For details see the section "Low Level Access
to dBASE Files" in the Appendix of this manual.

 372 TOPAZ Technical Reference

__

OpenLibrary procedure VIDPOP

Purpose: Opens a disk-based screen library for subsequent screen display.

Declaration: OpenLibrary(WhichLib : Byte; LibraryName : String;
StayOpen : Boolean);

Parameters: WhichLib is the logical library number which must be in the range of 1..10. LibraryName
may be a variable or literal and may optionally include the path. StayOpen governs whether
the library file handle will or will not be freed between screen display accesses.

Notes: Up to 10 libraries may be open concurrently assuming that enough file handles are available.
Only the header of the library is read into memory. The header contains a directory of the
screens in the library and pointers to their positions in the file. Library files do not have any
default extension so if the library file has an extension it must be specified. Any path to the
file must be specified if the library is not found in the current directory. If there are sufficient
file handles available, a slight performance improvement can be obtained by specifying a
value of True for the StayOpen parameter. This means that the overhead of opening the file,
each time a screen from the library is displayed, is eliminated. SAYWHAT?! is required to
create screen libraries.

See also PopLib, CloseLibrary.

Example: OpenLibrary(1,'Screens.Lib', True);

 TOPAZ Technical Reference 373

__

PACK procedure DBF4

Purpose: PACK is used to purge records marked for deletion from a database.

Declaration: PACK;

Notes: The file to be PACKed must be opened with the USE procedure and currently selected.
PACK does not create a temporary file, or use any additional disk space. If your program has
Set_Safety_On, PACK will prompt the end-user for confirmation at run time on the
scoreboard row. If your program has SET_ESCAPE_ON prior to the call to PACK, the end-
user can interrupt and terminate the PACKing process. However, be warned that terminating
PACK can cause one or more records to be duplicated in the file! If your program must allow
interruption of the purging process, a safer method is to SET_DELETED_ON and CopyTo
a new temporary file. If your program has SET_TALK_ON, PACK will display its progress
in percentage of completion on the monitor. Indexes which are currently open for the database
being packed will be automatically re-indexed after the file is packed. Any MemoFile
associated with the database will also be packed.

See PackMemoFile and ActiveMemos.

Example: USE('customer', @customer, SizeOf(customer));
PACK;

 374 TOPAZ Technical Reference

__

PackMemoFile procedure MEMO

Purpose: Permits the programmer to do "garbage collection" on a memo file.

Declaration: PackMemoFile;

Notes: Packing consists of removing "dead" blocks of text in a memo file, and does not remove
memos for records marked for deletion. Packing occurs on the memo file associated with the
currently selected database file. This function is performed automatically whenever you PACK
a database that has a memo field. Use the ActiveMemos function to determine when calls to
PackMemoFile are warranted. PackMemoFile will not reposition the DBF file.

See also ActiveMemos.

Example: SelectAlias('calls');
if ActiveMemos < 0.50 then PackMemoFile;

 TOPAZ Technical Reference 375

__

PageLine function TZPRINT

Purpose: Returns the string stored in the AtPrint page image at a specified row.

Declaration: PageLine(R : Integer) : String;

Parameter: R is the row in the AtPrint page image.

Notes: The AtPrint procedure permits the programmer to create a page image with random access
to rows and columns on the page. In certain instances, it is useful to be able to interrogate the
page image to determine the string to be printed for a row. If R is out of range of the page
image, an empty string is returned.

See MaxPageLines, AtPrint.

 376 TOPAZ Technical Reference

__

Paint procedure SAYGET4

Purpose: The Paint procedure allows you to change the attribute of any character or line on the screen
without changing the characters already there. The screen will be painted starting at Col, Row
for N positions with the specified colors. Paint does not observe the constraints of Pascal
windows.

Declaration: Paint(Col, Row, Width, FgColor, BgColor : Byte);

Parameter: Col and Row are by default the column and row coordinates in the Pascal convention. If the
dBASE convention is used, the order of parameters is Row, Col. FgColor and BgColor
(foreground and background colors) are specified using the Pascal color convention (0..15,
0..7 respectively).

Notes: Screen coordinates can be in either the Pascal or dBASE convention. See
Set_Coordinates_To.

Example: Paint(10,12,8,Black,Red);
{paints an 8-character wide area on the screen starting at column 10,
row 12 with foreground in black and background in red}

 TOPAZ Technical Reference 377

__

PasteString procedure EDIT

Purpose: Permits the programmer to insert a string into a memo or text file while a TOPAZ Editor
session is in progress.

Declaration: PasteString(S : String);

Parameter: S is any string to be injected into the text of a memo or file at the current cursor location in the
memo or text file.

Example: {While editing a text file, the end-user may press <F10> to insert the
system date into the file at the current cursor location}

{$F+}
procedure InjectSystemDate;
begin
 PasteString(SystemDate);
end;

.

.
begin
 Set_EditFKey(F10, @InjectSystemDate);
 EditText('myfile.txt');
 .
 .
end;

 378 TOPAZ Technical Reference

__

Peek function DBF4

Purpose: Returns in string format the contents of specific field from a specific record of the database.

Declaration: Peek(FieldNum : Byte; RecordNum : LongInt) : String;

Parameters: FieldNum is the field number to be retrieved. RecordNum is the record number to retrieve
from. If the FieldNum parameter is 0, then you will be "Peeking" at the Deleted byte of the
record.

Notes: Peek returns the dBASE "ASCII" contents of a specific field and record. The database needs
to be open and selected, but does not need to be positioned on the record. Furthermore, Peek
will not change the position of the database, or affect the Pascal-user record in any way. If an
invalid field or record number is specified, Peek returns an empty string.

Peek returns the stored string representation of all data, non-trimmed, regardless of the Pascal
datatype. When a date field is specified, Peek returns the date in dBASE internal storage
format: YYYYMMDD (See example 2).

Peek is good for searching a certain field in a database quickly since no data type conversion
is done. See examples.

This can be a very fast way to scan a database where there is no index on the field of interest.
In some instances, this method can be even faster than using the Search procedure.

Peek will set DBFError if any I/O error occurred but no halt is generated.

Usually, Peek does a Seek and BlockRead for each call. A look-ahead cache optionally allows
Peek to do one Seek and BlockRead into a cache of many records. Subsequent Peeks then
read this cache and no additional disk I/O is required for whatever number of records fit in the
cache. This also means that you can call Peek multiple times for the same record with no I/O
penalty.

Default size of cache is zero bytes. Call:

Set_PeekCache_To(<CacheSize>)

to enable the caching and Set_PeekCache_To(0) to both disable the cache and dispose of
memory used by the cache. The first call to Peek will allocate memory if necessary.
Subsequent calls to Peek for a different database will flush the cache. CacheSize is specified
in bytes and may not be larger than $FFF0 bytes.

See Poke, Search, Set_PeekCache_To.

 TOPAZ Technical Reference 379

Example 1: for N := 1 to RecCount do
 if Peek (2, N) = 'SMITH ' then

WriteLn ('SMITH found in record ', N);

Example 2: for N := 1 to RecCount do
 if Peek (7, N) > '19880101' then
 WriteLn ('Date found after January 1, 1988 in record ', N);

 380 TOPAZ Technical Reference

__

PickFile function PICK

Purpose: Displays a "point-and-shoot" list of file names in a window specified by the
Set_PickWindow_To procedure, and returns the filename selected by the end-user.

Declaration: PickFile(Mask : String) : String;

Parameter: Mask is a DOS-like filename template using the wildcard symbols "*" and "?". If the mask is
followed by NOEXTENSION, extensions will not be displayed with the file names. Files may
be also selected by attribute. See notes below for additional clauses pertaining to file
attributes.

Notes: The color attributes used by PickFile are those set by the most recent call to
Set_Pick_Color_To, and the part of the screen used by PickFile is set by the most recent call
to Set_PickWindow_To. File names are displayed in alphabetical order.

PickFile returns the extension whether or not NOEXTENSION is specified in the mask.

PickFile utilizes the current pick-window position, size, and header, as specified by
Set_PickWindow_To(), with one difference: When the number of files matching the mask is
less than the number of rows specified, the window displaying the file list will automatically
resize to fit the list of files. If no files are found, a box will appear with the header "Press
<Esc>" and the message "No Files" and will disappear when the <Esc> key is pressed.
As with PickList, PickFile will automatically save and restore the area of the screen covered
by the file window. Before calling PickFile be sure to have specified a pick window of
sufficient size to display the filenames. Usually a window 14 characters wide is the minimum
appropriate size.

Note, that the file list can be "seeded" by using the clause SEED=. See Example 7 below.

 TOPAZ Technical Reference 381

PickFile's mask parameter permits seven additional clauses specifying file attributes of
filenames displayed:

Clause Files Displayed

ADDDIRECTORIES Files and Directories
DIRECTORY Limited to directories
HIDDEN Hidden files
NOEXTENSION Filename only is displayed
NORMAL Regular files
READONLY Read only (R/O) files
SEED= Specified which file to start highlighted
SIZE&DATE display file size, date, and time
SYSTEM System files

By default PickFile does not list R/O, hidden, or system files, nor Volume IDs or directories.
If you want to view filenames with any of these attributes you must include the appropriate
clause in the PickFile parameter string. Any combination of clauses may be used but if you
want to view normal attribute files also you must include the NORMAL clause also.

When passing a file mask such as "G:*.SWL" PickFile will return the fully qualified
filename.ext only if the mask has a path. So, if you give a path, you will get a path back (see
table below):

mask has path mask without path
current dir returns path no path
Not in current dir returns path N/A

A global variable, PickFileResult of type SearchRec permits the programmer to inspect the
directory details of the filename that was selected. See your compiler manual for information
about the SearchRec data type. If the result of PickFile is an empty string then the value of
PickFileResult will be meaningless.

Normally, PickFile (or PickList) saves and restores the underlying screen. The global
boolean, PickSaveWindow, can be set to False, causing PickFile (or PickList) to leave their
displays on the screen.

It is possible to display the file size, date, and time with PickFile when you add the clause
'SIZE&DATE' (compile and run BROWSE.PAS to see it in action. Also see Example 9
below).

Keystrokes in PickFile (or PickList). If the end-user presses the <Esc> key, PickFile returns
the empty string. When PickFile is executing, the <Up> and <Down> cursor keys move the
highlighted bar. Pressing the <Space-Bar> will also move the highlighted bar down. <PgUp> and
<PgDn> scroll the display. The <Home> and <End> keys take the bar to the first filename and last
filename, respectively. Letter keys will result in a "hunt" for filenames starting with the letter
pressed. All other keys are disabled.

 382 TOPAZ Technical Reference

See Set_PickWindow_To, Set_Pick_Color_To, PickList, Set_Hunt_On/Off.

Example 1: {define a pick window, and then allow the end-user to select from a list
of DBF files. Suppress the display of the file extension:}
Set_PickWindow_To(10,10,20,20,DoubleLine,'Files');
FileName := PickFile('*.DBF NOEXTENSION');

Example 2: {in this example, the end-user is prompted for a filename. If the end-
user presses the "?" key, a list pops up of file names to choose from}
WatchKeys := ['?'];
SayGet(10,10,'Enter filename (or ?) ',Name,_S,8,0);
ReadGets;
if LastKey = '?' then Name := PickFile('*.DBF');

Example 3: {Allow the end-user to select from a list of directories:}
DirectoryName := PickFile('*. DIRECTORY');

Example 4: {To pick from a list containing all normal and hidden files in the
subdirectory \TP5:}
FileName := PickFile('\TP5*.* HIDDEN NORMAL');

Example 5: {To pick from a list containing all possible files:}
FileName := PickFile('*.* READ ONLY SYSTEM HIDDEN NORMAL');

Example 6: {To get the time and date of a selected file:}
Filename := PickFile('*.DBF HIDDEN READONLY');
if length(Filename) > 0 then
 TimeAndDate := PickFileResult.Time;

Example 7: {seed the file list:}
Filename := PickFile('*.DBF SEED=Customer.DBF');

Example 8: { change directories and navigate the entire directory tree on disk by
selecting the directory and pressing enter}
repeat
 fn := PickFile('*.* ADDDIRECTORIES');
 if fn='' then Exit;
 if (PickFileResult.Attr and Directory) = Directory then

ChDir(fn);
until (PickFileResult.Attr and Directory) <> Directory;
{The loop continues until the end-user either presses <Esc> or selects
a file}

Example 9: filename := PickFile('*.dbf SIZE&DATE');

 TOPAZ Technical Reference 383

__

PickList function PICK

Purpose: Displays a "point-and-shoot" list of user-defined string items in a window specified by the
Set_PickWindow_To procedure, and returns the number of the item selected by the end-user.

Declaration: PickList(ListMakerPtr : Pointer; MinItemNo,
MaxItemNo, StartingItemNo: Longint)

: Longint;

Parameter: ListMakerPtr is a pointer to a user-defined string function that returns that nth item of a list,
and must be declared FAR. MinItemNo and MaxItemNo are the smallest and largest item
numbers in the list to be displayed. StartingItemNo is the number of the item that will be
displayed as the first item in the window.

Notes: The color attributes used by PickList are those set by the most recent call to
Set_Pick_Color_To, and the part of the screen used by PickList is set by the most recent call
to Set_PickWindow_To.

The user-defined string function must have a single var integer parameter, n, and returns a
non-empty string based on the nth element of an array, a linked list, a case statement, a DBF
file in natural order, or a DBF in indexed order. Normally, n is the absolute number of the item
in the list. For indexed databases, or databases with SET_DELETED_ON, or databases where
a filter is active (resulting from SET_FILTER_TO), n is a relative number of records to SKIP.
In these cases, StartingItemNo must be zero. Study the examples shown below carefully.

Keystrokes in PickList. If the end-user presses the <Esc> key, PickList returns 0. The <Up>
and <Down> cursor keys move the highlighted bar. Pressing the <Space-Bar> will also move the
highlighted bar down. <PgUp> and <PgDn> scroll the display. The <Home> and <End> keys take
the bar to the first item or last item, respectively. Letter keys will result in a "hunt" for items
starting with the letter pressed. All other keys are disabled. <Tab> and <Shift-Tab> will move the
bar down and up.

 384 TOPAZ Technical Reference

Special returned codes. PickList returns 0 and negative numbers as follows:

 0 = <Esc> key pressed (or <Right-Mouse-Button> pressed)

-1 = <Left> cursor key pressed, and EnableLeftRightExit is True

-2 = <Right> cursor key pressed, and EnableLeftRightExit is True

-3 = Insufficient memory to run PickList

EnableLeftRightExit is a global boolean that is normally False. In this default state, the left
and right cursor keys have no effect in PickList. When this boolean is set True, the left and
right cursor keys terminate PickList.

No PickList application should have blank or empty strings in the list. See
Set_PickWindow_To, Set_Pick_Color_To, PickFile, Set_Hunt_On/Off.

Example 1: {Picking from a list where the list elements are hardcoded in a case
statement:}
{$F+}
function StateName(var n:integer) : String;
begin
 case n of
 1: StateName := 'Alabama';
 .
 .
 50: StateName := 'Wyoming';
 end;
end;
{$F-}
.
.
Set_PickWindow_To(10,10,30,20,NoLine,'');
i := PickList(@StateName,1,50,1);
if i<>0 then WriteLn('State selected: ',StateName(i));

In the above example, the user-defined function StateName provides the string associated with
the nth item in the list (in this case, a list of the names of all 50 states). Notice the function is
declared FAR, and the parameter N is a varparameter. PickList returns an integer in the range
of 1..50 corresponding to the state name chosen, or 0 if the end-user pressed the <Esc> key.

 TOPAZ Technical Reference 385

Example 2: {Use selects from a choice of records belonging to a database in natural
(unindexed) order:}

{$F+}
function CustomerName(var n:Integer) : String;
begin
 GO(n);
 CustomerName := Customer._CUSTNAME;
end;
{$F-}
.
.
.
i := PickList(@CustomerName,1,RecCount,1);

In this example, the user-defined function CustomerName returns a string field in a database
of names, where N is used to identify the record number. The range of N is specified from 1
to RecCount, and the first record in the file will be displayed at the top of the list. Providing
the end-user does not press <Esc>, the Customer database will be positioned on the selected
record upon termination of PickList.

Example 3: If the database is indexed, filtered, or SET_DELETED_ON is active, the method illustrated
in the previous example will not work properly.

The example below shows the correct usage of PickList for such cases.

{$F+}
function CustomerName(var n:Integer) : String;
begin
 SKIP(n);
 CustomerName := Customer._CUSTNAME;
end;
{$F-}
.
.
.
i := PickList(@CustomerName,1,RecCount,0);

Notice that the value of N passed to the user-defined function is not an absolute record or list
number, but a relative number to SKIP. The starting list number of "0" passed to PickList is
the signal that the file is to be listed in indexed order.

 386 TOPAZ Technical Reference

__

PICTURE procedure SAYGET4

Purpose: The PICTURE procedure allows you to define the format of a data entry field, similar to the
PICTURE clause in dBASE. PICTURE acts as a modifier to a SayGet statement. Each call
to PICTURE affects the prior SayGet statement. Only one call to PICTURE is allowed for
each SayGet. The formatting symbols which can be used in a PICTURE statement are: !, #,
9, A, a, L, Y, X, and x. All other characters used in a PICTURE statement will be considered
literals and will be inserted into the data. The exclamation point (!) will cause any alpha
character at that position in the field to be forced to uppercase, other characters are not
affected. The pound symbol (#) restricts input to numbers, spaces, or the arithmetic symbols:
plus (+), minus (-), and the decimal point (.). The character 9 is just like the # except that only
numbers and spaces may be entered at that position. Both the capital and lower case letter A
restrict input to alpha characters only. The capital 'A' forces input to be alpha and uppercase
and the lower case 'a' forces input to be alpha and allows either case. The set considered to be
alpha is: [a..z A..Z , . -].

Summary of PICTURE template elements:

! allows any character but forces letters to uppercase
A allows only alpha and forces uppercase
a allows only alpha of either case
9 allows only numbers or spaces
same as 9 but also allows signs and decimal points
X allows any character
x allows any character
L allows the logicals Y,y,N,n,T,t,F,f
Y allows the logicals Y,y,N,n
HH:MM formats 5 char time formats
MM:SS formats 5 char time formats

 TOPAZ Technical Reference 387

Summary of PICTURE functions:

@! Forces all letters to uppercase for the length of the string.

@A Forces all characters to uppercase alphabetic only.

@a Forces all characters to be alphabetic only.

@E Causes the cursor to be positioned at or just beyond the last character in the field, as
if the <End> key were pressed.

@K Blanks data field if first keystroke is a character. Equivalent to the Blankfield
command (<Ctrl-U> restores data at run time).

@M Allows fields to have a menu-like behavior. Only certain values are permitted, which
the end-user can cycle via the <Space-Bar> (see Example 5, below).

@R Empty data fields are not allowed and require input. Equivalent to the REQUIRED
modifier command.

@Z Causes numeric variables with zero values to be displayed as blanks.

PICTURE functions cannot be followed by another function, but can be followed by a
template providing that a space separates the two.

Declaration: PICTURE(Template : String);

Parameter: Template is the formatting string.

Notes: The PICTURE statement, if used, must follow a SayGet procedure call and is effective only
on the closest prior SayGet statement. In other words, you may place the PICTURE statement
anywhere in your code after the SayGet call it belongs with, but it must be before another
SayGet call or ReadGets call. PICTURE is not effective until the call to ReadGets.
PICTURE is mainly relevant for string and char variables. For numeric variables, all
PICTURE clauses except @Z are ignored.

Date type variables are given a default picture of '99/99/99' which cannot be changed with an
additional PICTURE statement. In fact, any PICTURE statement on a date variable will be
ignored.

Time type variables (_T) are formatted as HH:MM:SS by default. If the field width in the
SayGet call is 5, the default format is MM:SS. If the desired format is instead HH:MM, follow
the SayGet call with PICTURE ('HH:MM'). The time variable must still be of type String8,
however. The valid range of hours is 0-99, of minutes is 0-59, and of seconds is 0-59.

It is also possible to define your own PICTURE template symbol and the valid set of
characters to be allowed when that symbol is in a picture statement. For example, to add a

 388 TOPAZ Technical Reference

PICTURE symbol to limit input to only lower case alpha characters and no spaces or
punctuation, add the following code to your program:

UserSet := ['a'..'z'];
UserChar := '^'; { may NOT be set to the empty string}
PICTURE('^^^^^^^^^^^'); {will allow only lowercase input}

Setting UserSet to the empty set [] prevents checking for the existence of the UserChar in the
PICTURE template.

Memo fields may also have PICTURE clauses. These PICTURE clauses contain any of the
permissible clauses passed to EditMemo. See pages 55, 276 for an example, and pages 275,
276 for the list of clauses. See SayGet, ReadGets, ClearGets, RANGE and the demo program
SGDEMO.PAS in the SAMPLES.ZIP file on the TOPAZ distribution disk(s).

Example 1: SayGet(1,5,'Phone number: ',phone,_S,14,0);

 PICTURE('(999) 999-9999'); {accepts digits only}

Example 2: SayGet(1,6,'Last Name: ',_last_name,_S,20,0);
 PICTURE('@K'); {first keystroke blanks field}

Example 3: FileName := '\INVOICES\';
SayGet(1,7,'File Name: ',FileName,_S,64,0);
 PICTURE('@E'); {cursor positioned after path}

 TOPAZ Technical Reference 389

Example 4: {Example using a PICTURE function and template together}
PICTURE('@K !XXX');

Example 5: SAYGET(10,10, 'Title: ', _S, 5, 0);
PICTURE('@M Mr.;Ms.;Dr.;Capt.;Rev.');

{When the ReadGets session is running, the end-user can press the <Space-
Bar> to cycle among the valid choices: Mr., Ms., Dr., Capt., Rev. The
semicolons in the picture clause are choice delimiters}

 390 TOPAZ Technical Reference

__

Plural function TZUTILS

Purpose: Returns the singular or plural form of a noun given the number of items.

Declaration: Plural(N : LongInt; S : String) : String;

Parameters: N is the number of items, S is the noun in its singular form.

Notes: Displays and reports can appear primitive when messages like "No file(s) found", or "1
customers found" show up. The Plural function is an attempt to provide a convenient way to
avoid such problems. The string S can be more than a single word, of course. See example
below.

Example 1: s:='copy';
WriteLn(Plural(0,s)); {Displays "No copies"}
WriteLn(Plural(1, s)); {Displays "1 copy"}
WriteLn(Plural(2, s)); {Displays "2 copies"}

Example 2: WriteLn(Plural(0,'Day')); {"No Days"}
WriteLn(Plural(1,'Day')); {"1 Day"}
WriteLn(Plural(2,'Day')); {"2 Days"}

Example 3: {an alternate method to Plural uses Immediate If:}
WriteLn(n, IIF(n<>1, ' copies', ' copy'));
{note that IIF gives you greater flexibility, but is much less readable
than Plural.}

 TOPAZ Technical Reference 391

__

Poke procedure DBF4

Purpose: Replaces a specified field of a specified record in the currently selected database.

Declaration: Poke(S : String; FieldNum : Byte; RecordNum : LongInt);

Parameters: S is the string to be stored in the database file. FieldNum is the field number to receive the
data. RecordNum is the record number where the data is to be stored.

Notes: This is the logical companion to the Peek function. You specify the string, field number, and
record number, and the string will be written to that field in that record.

WARNING: Do not poke to a field that is used as part of an index key! Indexes will not be
updated by Poke !

In multi-user programs the file must be locked with FLOCK since it is not possible to lock a
record which is not the current record.

It is up to the programmer to format the string parameter properly according to the field type
being written to. For instance, dates must be in the format YYYYMMDD (century, year,
month, day), and numbers (as well as all strings) must be formatted to the proper width. If
the string parameter is too long for the field it will be truncated, if it is shorter then only the
characters up to the length of the string supplied in the call (S) will be replaced.

Poke will set DBFError if any IO error occurred, but no halt is generated.

See Peek.

 392 TOPAZ Technical Reference

__

PopBrowse procedure BROWSE4

Purpose: Restores the parameters from the last BROWSE session that was saved with the PushBrowse
command.

Declaration: PopBrowse;

Notes: BROWSE can be recursive. Thus a BROWSE "Calc" routine may call up another
"instantiation" of BROWSE on either the same, or another database. The PopBrowse
procedure restores all BROWSE settings that were saved with the PushBrowse command.

See PushBrowse.

 TOPAZ Technical Reference 393

__

PopColors procedure SAYGET4

Purpose: Restores the colors from the most recent PushColors.

Declaration: PopColors;

Notes: PushColors and PopColors build a stack on the heap and therefore can be nested to as many
levels as memory on the heap permits. See PushColors.

Example: procedure ShowClock;
begin
 PushColors;
 SET_COLOR_TO(Green,Black,Green,Black);
 At(1,1,SystemTime);
 PopColors;
end;

 394 TOPAZ Technical Reference

__

PopLib procedure VIDPOP

Purpose: Displays a screen from a disk-based screen library previously opened by a call to the
OpenLibrary procedure.

Declaration: PopLib(WhichLib : Byte; ScreenName : String8);

Parameters: WhichLib is the logical library number established when the library was opened. ScreenName
is the name of the screen in the library to be displayed.

Notes: If the specified screen is not found in the specified library then the global boolean variable
ScreenFound will be set to False. Requires libraries created with SAYWHAT?!

If VIDPOP.AutoSaveMode is set to True, then the area of the screen about to be covered by
the specified screen will be saved, just as if PushWindow had been called.

See also: Set_ScreenShadow_On/Off, OpenLibrary, CloseLibrary, PopLibMem.

Example: PopLib(1,'MainMenu');

 TOPAZ Technical Reference 395

__

PopLibMem procedure VIDPOP

Purpose: Displays a screen from a linked screen library or a library loaded onto the heap.

Declaration: PopLibMem(PtrToLib : Pointer; ScreenName : String8);

Notes: If the specified screen is not found in the specified library then the global boolean variable
ScreenFound will be set to False. Requires screen libraries created with SAYWHAT?!

If VIDPOP.AutoSaveMode is set to True, then the area of the screen about to be covered by
the specified screen will be saved, just as if PushWindows had been called.

See also PopScreen, Set_ScreenShadow_On/Off.

Example: PopLibMem(@mylibrary,'MainMenu');

 396 TOPAZ Technical Reference

__

PopMenu procedure VIDPOP

Purpose: Restores the moving bar menu environment variables as they existed at the time PushMenu
was last called.

Declaration: PopMenu;

Notes: PopMenu will restore menu settings saved by PushMenu, so that you can nest menus and
automatically keep the various values associated with each menu. The image of the menu is
not restored as it is assumed that the screen was saved and restored, and the heap space used
is recovered.

If there is no menu environment data available, in other words the menu stack is empty, then
an error will be generated.

Example: repeat

 PopScreen(@MyScreen); { a menu }
 PushMenu;
 case MenuChar of
 'R' : ReportsMenu; { another menu }
 'F' : FilesMenu; { another menu }
 end;
 PopMenu;
until MenuChar = 'Q';

 TOPAZ Technical Reference 397

__

PopMouse procedure TZCOMMON

Purpose: Restores the former Mouse target areas from a stack saved by PushMouse. PopMouse
together with PushMouse allow Mouse targets to be nested.

Declaration: PopMouse;

Notes: Unless the programmer wants to add additional Mouse support it is normally not necessary
to call PopMouse since TOPAZ automatically calls it when appropriate.

Example: AddTarget(1,1,5,5,1,LeftButtonReleased);
EnableMouse;
repeat

 GetEvent(e);
until (e.WhichEvent = Mouse) and (e.TargetID = 1);
PushMouse;
AddTarget(5,5,10,10,1,LeftButtonReleased);
EnableMouse;
... { use GetEvent to process the new set of targets }
DisableMouse;
PopMouse;
{ prior Mouse targets are restored }

 398 TOPAZ Technical Reference

__

PopRec procedure VFILES

Procedure: Removes the first record in a Virtual File and puts the data into the user's record buffer.

Declaration: PopRec;

Notes: Together with PushRec, PopRec simulates a "stack" operation using virtual files, in that the
record is deleted from the file, and the user's record contains the information.

While it is possible to have an index active on a virtual file, you should not use PopRec on an
indexed virtual file. The index routines don't get called by PopRec and the index file will be
corrupted.

See PushRec.

Example: USE('stack VIRTUAL FILE LIFO', @stack, SizeOf(stack));
stack._NAME := 'Sue';
PushRec;
stack._NAME := 'Mary';
PushRec;
stack._NAME := 'Donna';
PushRec;
{since the adding order is LIFO (Last-In-First-Out), when we pop these
records off the "stack", the names will be in reverse order:}
for i := 1 to 3 do
 begin
 PopRec;
 WriteLn(stack._NAME);
 end;
{this will display:
Donna
Mary
Sue }

 TOPAZ Technical Reference 399

__

PopScreen procedure VIDPOP

Purpose: To display individual SAYWHAT?! screens that have been linked in as .OBJ files.

Declaration: PopScreen(ScreenData : Pointer);

Parameter: ScreenData must be a pointer to the external procedure created to hold the screen data.

Notes: This method is the fastest way to display screens that have been created with SAYWHAT?!
Screens in the .SQZ format must first be converted into .OBJ files using Borland's
BINOBJ.EXE program which will create .OBJ files from any binary file.

The syntax to create an .OBJ file is as follows:

C>BINOBJ myscreen.sqz myscreen.obj myscreen

After you have an .OBJ file which contains the data for a screen, you must link the .OBJ file
into your program. This is achieved with the following code:

{$L myscreen.obj}

Since Pascal expects that anything linked in is code, we must fool it to allow data to be linked
in instead. All we have to do is declare a dummy procedure with the same name as the
procedure name we gave the screen when the .OBJ file was created by BINOBJ.EXE. The
declaration should look like this:

Procedure MyScreen; EXTERNAL;

Now the screen can be displayed anytime you like by calling PopScreen(@MyScreen);

If the screen contains a menu area the menu will be activated and PopScreen will wait for the
end-user to select something from the menu. For details see the section "Moving-Bar Menus"
in the Tutorial part of this manual.

If the global boolean AutoSaveMode has been set to True then the underlying screen area will
automatically be saved just as if a PushWindow command were issued prior to popping the
screen. To redisplay the saved screen area, call PopWindow. When using this "automatic"
method you must remember to either call PopWindow or ClearWindowStack to recover the
memory occupied by saved screens. If the saved screen contained a menu area, redisplaying
it will not activate the menu.

See also Set_ScreenShadow_On/Off.

Example: program Test;

 400 TOPAZ Technical Reference

{$L MyScreen}
procedure MyScreen; EXTERNAL;
begin
 PopScreen(@MyScreen);
end.

 TOPAZ Technical Reference 401

__

PopScreenGets procedure SCRENGET

Purpose: Permits nesting DoScreenGets and ScreenEdit

Declaration: PopScreenGets;

Notes: A DoScreenGets or ScreenEdit session may result in a recursive call to either procedure (if,
for instance a validation routine calls either of these procedures). In such cases, it is necessary
to save and restore data field information at each level or recursion. This is accomplished by
simply calling PushScreenGets prior to the nested call to DoScreenGets (or ScreenEdit), and
calling PopScreenGets after.

 402 TOPAZ Technical Reference

__

PopSqz procedure VIDPOP

Purpose: Displays individual SAYWHAT?! screens from disk. Screens must be in the .SQZ format.

Declaration: PopSqz(Filename : String);

Parameter: Filename must be a string or string constant consisting of at least the filename of the .SQZ file
to be displayed. The path to the screen file must be supplied if the screen is not in the current
directory.

Notes: It's the simplest way to display screens that were created in the SAYWHAT?! .SQZ format.
PopSqz will only display screens created by SAYWHAT?! and it must go to disk to find the
screen file each time you want to display a screen. If you omit the extension, PopSqz will add
'.SQZ' to the filename. PopSqz briefly requires up to 8000 bytes of heap space (for a buffer)
each time it is called.

If the global boolean variable AutoSaveMode is set to True then the underlying screen area
will automatically be saved just as if a PushWindow command was issued just prior to
popping the screen. To redisplay the saved screen area, call PopWindow. When using this
"automatic" method you must remember to either call PopWindow or ClearWindowStack to
recover the memory occupied by saved screens. If the saved screen contained a menu area,
redisplaying it will not activate the menu.

VGABrightBackEnabled, an additional global boolean in VIDPOP, exists for the purpose of
clearing up a problem with a certain small number of VGA cards. It affects all of the
procedures to display SAYWHAT?! screens and menus (PopSqz, PopScreen, PopLib, and
PopLibMem). VGABrightBackEnabled defaults to False. On any VGA system, when
popping a SAYWHAT?! screen with a bright background, set VGABrightBackEnabled to
True to see bright background colors. Some of these VGA cards cause the screen to have a
momentary "ragged" appearance. If this is objectionable, you may set
VGABrightBackEnabled to False to contain the problem.

Example: PopSqz('myscreen');

 TOPAZ Technical Reference 403

__

PopWindow procedure VIDPOP

Purpose: Restores the most recently "pushed" window and recovers all memory used to store it.

Declaration: PopWindow;

Notes: The screen or window that is displayed will be the one most recently stored and on the top of
the "stack". There are no restrictions on when PopWindow may or may not be called except
that an error is generated if the window stack is empty. Windows may be re-positioned by
calling Set_Position_To just before PopWindow. This procedure calls the DisplayWindow
procedure described elsewhere to display windows saved with the PushWindow procedure.

See also: PushWindow, DisplayWindow, Set_Position_To, ClearWindowStack.

Example: See PushWindow.

 404 TOPAZ Technical Reference

__

PositionProgress procedure DIALOG

Purpose: Causes the currently displayed Progress Bar to be positioned to the specified location, if the
Progress Bar was started with StartProgress.

Declaration: PositionProgress(I: LongInt);

Parameter: I is the absolute position of the Progress Bar, normalized to the maximum position of the bar
as specified in the call to StartProgress. For instance, if the program called
StartProgress(100), then I=50 will cause the bar to be half-grown. PositionProgress should
not be used if Set_Progess_On is active. See Set_Progress_On/Off, StartProgress,
ResumeProgress.

Example: {do a calculation 100 times, showing a proportional Progress Bar:}
N := 100;
StartProgress(100);
for i:=1 to N do

 begin
 ComplicatedMath;
 PositionProgress(i);
end;
Set_Progress_Off;

{ NOTE: calling AdvanceProgress N times will result in the Progress Bar
completely filling its display.}

 TOPAZ Technical Reference 405

__

PosOf function SAYGET4

Purpose: Returns the position of the nth occurrence of a specified character in a string.

Declaration: PosOf(N : Integer; C : Char; var S : String) : Byte;

Parameters: N indicates which occurrence of char C is being sought in the string S.

Notes: Usually the range of values that are passed in parameter N are determined in advance by first
calling CountOf(c,s), thus N should always be in the range of 1..CountOf(c,s). This function
is case sensitive.

When N is positive, PosOf searches forward. When N is negative, the string is searched
backwards. See Example 2 below.

Notice that the C parameter is also a string so that you can find the position of a string in
another string. It is up to the programmer to deal with case sensitivity/ insensitivity.

See CountOf.

Example 1: { Strip the path off of a filename by determining the position of the
last back-slash in the filename: }

TotalSlashes := CountOf('\',Filename);
if TotalSlashes > 0 then
 Path := Copy(Filename,1,PosOf(TotalSlashes,'\',Filename)
else
 Path := '';

Example 2: s := 'The lazy brown fox jumped over the dog';
c := 'e';
Writeln(PosOf(1,C,S)); { returns 3 (the "e" in "the lazy") }
Writeln(PosOf(-1,C,S)); { returns 34 (the "e" in "the dog") }

 406 TOPAZ Technical Reference

__

PrintComStatus function PRINTCOM

Purpose: Returns the current status of the PRINT.COM output device.

Declaration: PrintComStatus : Word;

Notes: This uses an undocumented PRINT.COM feature that returns a non-zero value if there is an
error on the output device. If PrintComStatus = 0 then the printer being used is operating.
This function is only supported by DOS 3.3 and later.

__

PrintComTimeSlice procedure PRINTCOM

Purpose: Gives PRINT.COM some extra time to execute and send characters to the printer.

Declaration: PrintComTimeSlice;

Notes: This is an undocumented PRINT.COM feature which can be used by applications which
normally have little idle time with which PRINT.COM can work.

PrintComTimeSlice gives PRINT.COM more time to execute. This function is supported
by DOS 3.1 and later.

Example: repeat
 if Printing then PrintComTimeSlice;
 CheckKeyBoard;
 CheckComPort;
 DisplayStatus;
until done;

 TOPAZ Technical Reference 407

__

PrinterReady function SAYGET4, PRINT

Purpose: Returns True if a printer is available for printing.

Declaration: PrinterReady(LPT : Byte) : Boolean;

Parameter: LPT identifies which printer port is to be tested. LPT can range from 1 to 4. If LPT is outside
of this range, only the printer at LPT1 is tested.

Notes: If the spooler is installed, this function will not return the "readiness" of the printer, but rather
of the spooler. Thus PrinterReady returns False when the spooler's buffer is full. This
function is available in both the SAYGET4 and DBF4 units. See the function
RealPrinterStatus to determine why a printer is not ready. Reports directed to the printer with
ReportForm automatically test printer readiness and inform the end-user if the printer is not
ready. See ReportForm.

Example: while not PrinterReady(1) do
 WAIT('Printer not ready! Press any key...');
WriteLn(lst,'Hello World');

 408 TOPAZ Technical Reference

__

PrintFile procedure TZUTILS

Purpose: Sends a text file to the DOS print device.

Declaration: PrintFile(Fn : String);

Parameter: Fn is the name of the text file to print.

Notes: TOPAZ provides several methods for printing a file. One uses the CopyFile procedure to
"copy" a file to the print device. PrintFile works in a similar manner, but also checks that the
file Fn exists, and that the printer is ready. PrintFile directs the file to whatever port is
assigned to DOS's PRN device.

Example 1: PrintFile('mydata.txt');

Example 2: {handle printer not ready}
Set_AutoHalt_Off;
repeat

 PrintFile('mydata.txt');
 if DBFError>0 then DialogBox('Printer is not ready.','');
until DBFError=0;
Set_AutoHalt_On;

 TOPAZ Technical Reference 409

__

PrintMemo procedure MEMO

Purpose: Sends the contents of a memo to the print device.

Declaration: PrintMemo(MemoField : LongInt);

Parameter: MemoField is the memo field in the database to be printed.

Notes: See DisplayMemo, SendMemo, Set_MemoWidth_To.

Example: USE('MyFile', @MyFile, SizeOf(MyFile));
while not dEOF do
 begin
 PrintMemo(MyFile._NOTES; {send memo to printer and any

alternate devices}
 SKIP(1);
 end;
GoTop;

 410 TOPAZ Technical Reference

__

PrintPage procedure TZPRINT

Purpose: Sends string data and printer commands specified by prior calls to AtPrint to the print device,
and leaves the page image in memory.

Declaration: PrintPage;

Notes: A printer page image constructed with calls to AtPrint can be sent to the printer with EJECT

or PrintPage. Unlike EJECT, PrintPage does not clear the page image. Thus, the
programmer may make multiple calls to PrintPage for additional copies, or use PrintPage
when several similar documents are to be created and printed. Neither PrintPage nor EJECT
will send a Form Feed to the printer. PrintPage sends the contents of the page buffer to
alternate device(s).

See AtPrint, PrintPage, Set_PageSize_To, ClearPage, EJECT.

Example: { print ten copies of the current page buffer }

for i := 1 to 10 do PrintPage;
ClearPage;

 TOPAZ Technical Reference 411

__

PrintQueueCount function PRINTCOM

Purpose: Returns the number of files currently in the PRINT.COM queue.

Declaration: PrintQueueCount : Integer;

Notes: Returns zero if there are no files in the queue. See QUEUE.PAS for a complete example.

__

PrintQueueItem function PRINTCOM

Purpose: Returns the nth filename in the PRINT.COM queue.

Declaration: PrintQueueItem(i : Integer) : PathStr;

Parameter: i should be in the range of one to the total number of files in the queue.

Notes: If the filenames were submitted by SpoolFile then the returned name will be fully qualified
however if the filename was submitted to PRINT.COM from the DOS prompt without the
path then PrintQueueItem will return an unqualified filename. See QUEUE.PAS for a
complete example.

 412 TOPAZ Technical Reference

__

ProperCase function TZUTILS

Purpose: Returns a string with "proper" case, i.e., the first character of all words will be upper case, and
all other characters will be lower case.

Declaration: ProperCase(S : String) : String;

Parameter: S is the string to be proper cased.

Notes: Conventional database applications store data, especially names, in all upper or all lower case.
ProperCase provides a good, but not foolproof, method of recovering the original case of the
characters.

Example: s:='MR. ROBERT BOYLE, JR.';
WriteLn(ProperCase(s));
{displays "Mr. Robert Boyle, Jr."}

 TOPAZ Technical Reference 413

__

PushBrowse procedure BROWSE4

Purpose: Saves the parameters from the current BROWSE session so that a "nested" version of
BROWSE can be called recursively.

Declaration: PushBrowse;

Notes: With PushBrowse, a Browse_Calc routine may call up another "instantiation" of BROWSE
on either the same, or another database. The PopBrowse procedure then restores all BROWSE
settings that were saved with the PushBrowse command. BROWSE may be nested with
PushBrowse to as many levels deep as memory permits. Each call to PushBrowse uses about
1300 bytes from the heap. PushBrowse does not save or restore the value of the WatchKeys
set. This means that when you PushBrowse you may want to save the value of WatchKeys,
set it to the empty set, and then after you call PopBrowse you can restore the prior value.

See PopBrowse, Set_Browse_Calc_To.

Example: procedure Calc;
begin
 PushBrowse;
 {you can now..}
 Set_BrowseWindow_To (....);
 Set_Browse_Calc_To (@anothercalcroutine);
 BrowseExitKeys := [];
 SELECT (AnotherDatabase);
 {etc., etc.}
 {then,}
 BROWSE ('...');
 PopBrowse;
 SELECT (OriginalDatabase);
end;

begin {main program}
 SET_Browse_Calc_TO(@Calc);
 BROWSE('');
end;

 414 TOPAZ Technical Reference

__

PushColors procedure SAYGET4

Purpose: Saves the current colors specified by the last call to SET_COLOR_TO and Set_Highlight_To.

Declaration: PushColors;

Notes: The use of PushColors and PopColors is a convenient way for procedures that handle
specific display tasks in a given color, to return with all colors restored to the settings upon
entry. See PopColors, SET_COLOR_TO, Set_Highlight_To, CurrentColors.

Example: procedure ShowClock;
begin
 PushColors;
 SET_COLOR_TO(Green,Black,Green,Black);
 At(1,1,SystemTime);
 PopColors;
end;

 TOPAZ Technical Reference 415

__

PushMenu procedure VIDPOP

Purpose: Saves the current moving-bar menu environment variables for later restoration.

Declaration: PushMenu;

Notes: The two procedures PushMenu and PopMenu will save and restore menu settings so that you
can nest menus and automatically keep the various values associated with each menu. Each
time PushMenu is called it adds a record (355 bytes) to a linked list on the heap (simulating
a stack). Each record records the following data for the current or last activated menu:

 - MenuSeed, MenuChar, MenuChoice, MenuString,
 - whether Escape is enabled,
 - the menu help and function key procedure pointers,
 - the function key trigger string,
 - and a pointer to the last menu data saved, if any.

When PopMenu is called, the data from the most recently "pushed" menu environment are
restored and the heap space used is recovered. The image of the menu is not restored, as it
is assumed that the screen was saved and restored.

Example: repeat
 PopScreen(@MyScreen); { a menu }
 PushMenu;
 case MenuChar of
 'R' : ReportsMenu; { another menu }
 'F' : FilesMenu; { another menu }
 end;
 PopMenu;
until MenuChar = 'Q';

 416 TOPAZ Technical Reference

__

PushMouse procedure TZCOMMON

Purpose: Saves the current Mouse target areas on a stack, clears the target areas, and permits another
set of Mouse targets to be defined. Thus, PushMouse together with PopMouse allow Mouse
targets to be nested.

Declaration: PushMouse;

Notes: Unless the programmer wants to add additional Mouse support it is normally not necessary
to call PushMouse since TOPAZ automatically calls it when appropriate.

Example: AddTarget(1,1,5,5,1,LeftButtonReleased);
EnableMouse;
repeat

 GetEvent(e);
until (e.WhichEvent = Mouse) and (e.TargetID = 1);
PushMouse;
AddTarget(5,5,10,10,1,LeftButtonReleased);
EnableMouse;
... { use GetEvent to process the new set of targets }
DisableMouse;
PopMouse;
{ prior Mouse targets are restored }

 TOPAZ Technical Reference 417

__

PushRec procedure VFILES

Purpose: Adds a record to a Virtual File.

Declaration: PushRec;

Notes: The PushRec command is identical to APPEND, and is included in TOPAZ as a companion
syntax to PopRec.

While it is possible to have an index active on a virtual file, you should not use PushRec on
an indexed virtual file. The index routines don't get called by PushRec and the index file will
be corrupted.

See PopRec, Set_VFileMode_To.

 418 TOPAZ Technical Reference

__

PushScreenGets procedure SCRENGET

Purpose: Permits nesting DoScreenGets and ScreenEdit

Declaration: PushScreenGets;

Notes: A DoScreenGets or ScreenEdit session may result in a recursive call to either procedure (if,
for instance a validation routine calls either of these procedures). In such cases, it is necessary
to save and restore data field information at each level or recursion. This is accomplished by
simply calling PushScreenGets prior to the nested call to DoScreenGets (or ScreenEdit), and
calling PopScreenGets after.

 TOPAZ Technical Reference 419

__

PushWindow procedure VIDPOP

Purpose: Saves the contents of a rectangular area of the screen for later recall.

Declaration: PushWindow(Col1, Row1, Col2, Row2 : Byte);

Parameters: Col1 and Row1 specify the upper left hand corner of the window and Col2 and Row2 specify
the lower right corner in Pascal coordinates. Coordinates may not be specified with the
dBASE coordinate system.

Notes: This procedure stores the contents of the specified rectangle on the heap in a simulated stack
similar to the operation of PushMenu. A linked list of windows is created which keeps track
of the buffers and storage sequence. The amount of heap space used to store each window
varies depending on the size of the specified rectangle. This procedure calls the FillWindow
procedure.
See also PopWindow, FillWindow, ClearWindowStack.

Example: begin
 PushWindow(10,10,50,20);
 {...do something...}
 PopWindow;
end;

 420 TOPAZ Technical Reference

__

PutDBFRecord procedure TZDBFLOW

Purpose: Low Level write to dBASE file.

Declaration: PutDBFRecord(varR : DBFrecord; RecNum : LongInt);

Parameter: R identifies the database and RecNum is the record number to be written to disk.

Notes: This is a low level TOPAZ command. For details see the section "Low Level Access to
dBASE Files" in the Tutorial part of this manual.

 TOPAZ Technical Reference 421

__

RANGE procedure SAYGET4

Purpose: Used to prevent input of numbers, dates, or characters out of the specified range. When out-
of-range values are entered and SCOREBOARD is set ON the message

Range =<lower limit> to <upper limit>

is displayed on the scoreboard row of the screen. Both parameters must be char or string
variables (or constants) with a maximum length of 22 characters each. Numbers must be
represented as strings e.g. '12' would be used to represent the integer 12 and '43.5' would be
used to represent the real number 43.5. Dates must be in the format: 'mm/dd/yy'.

Optional syntax: RANGE('<string of chars>',''); allows you to specify a list of characters as
valid input in a variable of type Char e.g. RANGE('ABCDE',''); The contents, if any, of the
second parameter are ignored when the variable type is Char, but the nonetheless the second
parameter must be present.

Declaration: RANGE(Lower_Limit, Upper_Limit : String14);

Parameter: Limits for all types must be expressed as a string.

Notes: RANGE is also effective on the first character of string fields (see Example 3 below).

See SayGet, ReadGets, PICTURE, Set_Scoreboard_To, SET_SCOREBOARD_ON/OFF.

Example 1: SayGet(1,10,'Age: ',_age,_I,3,0);
RANGE('10','99');

Example 2: SayGet(1,11,'Record Number: ',_LI,6,0);
RANGE('1', SInteger(RecCount,6));

Example 3: SayGet(10,10,'Enter drive letter: ',MyDbf._Drive,_S,1,0);
PICTURE('!');
RANGE('ABCDEF',''); { limit input to A,B,C,D,E, or F }
ReadGets;

 422 TOPAZ Technical Reference

__

ReadGets procedure SAYGET4

Purpose: This procedure is the companion to SayGet and is just like READ in dBASE. After you have
setup the screen with SayGet calls (using PICTURE, RANGE, etc. as desired) and you are
ready to ask for input, merely invoke ReadGets. During ReadGets the variables declared by
you in all of the current SayGet procedures can be edited by the end-user. Just as in dBASE,
you can use your cursor keys, control keys, return key, and back space key to go forwards and
backwards through all the displayed fields in the order defined by the sequence of SayGet
calls. Edit keystrokes in effect will be:

<Ctrl-W> : terminate the read statement
<Ctrl-R> : move to beginning of first field on screen
<Ctrl-C> : move to beginning of last field on screen
<Ctrl-V> : toggle insert mode on/off (cursor size indicates current

mode)
<Ctrl-G> : delete character at the cursor
<Ctrl-T> : delete word to the right of the cursor
<Ctrl-U> : restores prior data to the field (undo)
<Ctrl-Y> : delete everything to the right of the cursor
<Ctrl-S> : move the cursor to the left one character
<Ctrl-D> : move the cursor to the right one character
<Ctrl-E> : move to beginning of previous field
<Ctrl-X> : move to beginning of next field
<Ctrl-F> : move to next word in field
<Ctrl-A> : move to prior word in field
<Ctrl-Q> : same as <Ctrl-W> (see Note on EditResult)
<Esc> : same as <Ctrl-W> (see Note on EditResult)
<PgUp> : Exit ReadGets
<PgDn> : Exit ReadGets
<Home> : goto first editable position of current field
<End> : goto last character + 1 in current field
 : delete character at cursor

 (same as <Ctrl-G>)
<Insert> : toggle insert mode on/off

 (same as <Ctrl-V>)

Declaration: ReadGets;

Notes: Padding. String variables are normally returned padded with spaces to the length specified
in the SayGet statement. Thus if you need to do any string comparisons, trim the strings after
the ReadGets statement. It is possible to cause SayGet to do the trimming of a string variable
for you by specifying a non-zero value in the decimals parameter of the SayGet statement.

ReadGets uses colors specified by Set_Color_To and Set_Highlight_To. For delimiters refer
to Set_Delimiters_To.

EditResult. If you need to detect if the end-user abandoned the edit session by pressing
<Ctrl-Q>, test the value of EditResult, if it is equal to 1 then the end-user pressed <Ctrl-Q> to exit,

 TOPAZ Technical Reference 423

if it is 2 then the end-user pressed <Esc> to exit the edit session. No validation routines, if
specified, will be executed. It is up to you to prepare for and deal with the data should that
occur. In other words it is your choice to support or not support the <Ctrl-Q> exit method. If you
choose to support it, use scratch vars to edit and once determining that the edit was successful,
assign the value of the scratch variables to the actual variables.

EditResult is set at the end of all ReadGets calls indicating the manner in which the full-screen
edit was exited:

-2 : User finished editing with the <Left-Arrow>, <Up-Arrow> or <PgUp> keys
-1 : User finished editing with <PgDn> or ExitRead = True
 0 : User finished editing normally, i.e, with <Ctrl-W>, or by exiting

the last field with <Enter>, <Down-Arrow>, or <Right-Arrow>
 1 : User abandoned editing by pressing <Ctrl-Q>
 2 : User abandoned editing by pressing <Esc> (and if ESCAPE is set ON)
 3 : ReadGets time-out occurred (if enabled)

Thus, testing EditResult after returning from ReadGets allows the programmer to determine
whether to use the variables as edited, or ignore the editing. Note that whenever EditResult
is positive a condition exists that may require special attention.

LastKey. The global char LastKey contains the last keystroke that ended a ReadGets session.
If the last key was <End>, <PgUp>, <PgDn>, or <Home> the value of LastKey will be as shown
below:

<End> #240 <PgUp> #242
<PgDn> #241 <Home> #11 = ^K

WatchKeys. This global, of type set of char, permits you to define a group of keystrokes that
will immediately terminate the ReadGets session. To specify a function or extended key,
simply add 128 to the scan code or use the predefined constants (F1..F10, etc.) used by Set-
FKey.

ExitRead. This is a global byte that can be used by Set_AutoHelp_To, Set_FKey_To and
Set_Validate_To user-defined procedures to exit from the ReadGets procedure. By setting
ExitRead to True, the ReadGets session is immediately terminated, and the global variable
EditResult is set to -1.

ExitField. Similar to ExitRead, except that the cursor will proceed to the next field rather than
exiting the ReadGets.

SpreadSheetMode. When set to True, cursor keys cannot be used to exit a field.

Insert Mode. When the Insert Mode is toggled (with either the <Ins> or <Ctrl-V> keys, the new
mode will stay in effect through succeeding ReadGets, until the mode is toggled again by the
user. This differs from the dBASE implementation where READ statements always start in
the Overwrite mode. See also SayGet.

Example 1: SayGet(1,1'Name',name,_S,30,0);

 424 TOPAZ Technical Reference

SayGet(1,2,'Balance: ',balance,_R,8,2);
SayGet(1,3,'Due Date: ',due,_D,8,0);
ReadGets;
{the vars "name", "balance", and "due" will be filled with data based on
the user's keyboard entry}

Example 2: scratch := name;
SayGet(1,1,'',scratch,_s,30,0);
ReadGets;
if EditResult <= 0 then name := scratch;
{end-user pressed <Esc>, so restore the variable}

Example 3: {set Watchkeys so that the data entry session is terminated if the end-
user presses <Q> or the <F1> key:}
SayGet(1,1,'Balance: ', balance,_R,8,2);
SayGet(1,3,'Due Date: ', due, _D, 8, 0);
WatchKeys := ['Q', chr(ord(';')+128)];
ReadGets;

 TOPAZ Technical Reference 425

__

RealPrinterStatus function SPOOLER

Purpose: Returns the physical status of the printer, whether or not the TOPAZ spooler is installed.
Returns the same value as BIOS Interrupt 17H, Function 2, as if the spooler were not
installed.

Declaration: RealPrinterStatus : Byte;

Notes: For a parallel printer, indicates whether printer is selected (on line) and/or has paper. For a

serial printer, returns a value of 16 if the printer is available (i.e., printer has its Clear-to-Send
line asserted), and 0 otherwise. Printer port number is determined by the most recent call to
SET_PRINTER_TO.

Example: PStat := RealPrinterStatus;
case PStat of
 0: {Paper is in, printer is NOT selected}
 2: {Printer timed out}
 16: {Paper is in, printer is selected}
 32: {Paper is OUT, printer is NOT selected}
 48: {Paper is OUT, printer is selected}
 64: {Undetermined error}
end;

 426 TOPAZ Technical Reference

__

RealVal function SAYGET4

Purpose: Returns a real value of the string passed to it. String parameter must not be longer than 22
characters. String can contain spaces or non-numeric characters.

Declaration: RealVal(S : String) : Real;

Parameter: S is string representation of numeric value.

Notes: If country is set to Germany (with Set_Country_To), commas are treated as decimal points
in real numbers. See Set_Country_To.

Example 1: if s = ' 1234.34 ' then
 r := RealVal(s); {would set r = 1234.34}
{However}
if s = ' 12 34.34 ' then
 r := RealVal(s); {will set r to the value 12.0}

Example 2: r := RealVal('$1,234,567.89');
{will set r to 1234567.89}

 TOPAZ Technical Reference 427

__

RecallRec procedure DBF4

Purpose: Sets the 'delete' byte in the user record to False, and writes the byte to disk for the current
record of the currently selected database.

Declaration: RecallRec;

Notes: Similar to the dBASE RECALL command. See DeleteRec.

Example: {Open the 'customer' database and restore all deleted records}

USE('customer', @customer, SizeOf(customer));
while not dEOF do
begin
 if Customer.deleted then RecallRec;
 SKIP(1);
end;

 428 TOPAZ Technical Reference

__

RECCOUNT function DBF4

Purpose: Returns the total number of records contained in the currently selected database. Equivalent
to RECCOUNT() in dBASE.

Declaration: RECCOUNT : LongInt;

Notes: Result includes deleted records, if any.

Example: WriteLn('There are ',RECCOUNT,' records in the file.');

__

RecNo function DBF4

Purpose: Returns the record number of the current record in the currently selected database. Equivalent
to RECNO() in dBASE.

Declaration: RecNo : LongInt;

Example: WriteLn('The current record is # ',RecNo:4);

 TOPAZ Technical Reference 429

__

RecSize function DBF4

Purpose: Returns the actual size in bytes of one record of the currently selected dBASE database file.

Declaration: RecSize : Word;

Example: WriteLn('Each record will add ',RecSize:4,
' bytes to the database file.');

 430 TOPAZ Technical Reference

__

REINDEX procedure INDEX4

Purpose: Rebuilds all of the open index files associated with the currently selected database.

Declaration: REINDEX;

Notes: An error will be generated if no database is open in the currently selected area, or if there are
no index files open.

Example: {rebuild all open index files of the Customer database}

SelectAlias('customer');
REINDEX;

 TOPAZ Technical Reference 431

__

RemoveDialogBox procedure DIALOG

Purpose: Restores the display after a call to DialogBox where it was specified that the Dialog box
remain on the screen.

Declaration: RemoveDialogBox;

Notes: See DialogBox.

Example: {Post a message, and then go off processing data. When done, remove the
message.}
c := DialogBox('Processing data left and right;

Please wait', StayOn);
for i := 1 to n do ...
 RemoveDialogBox;

 432 TOPAZ Technical Reference

__

RemoveISRVector procedure TZCOMMON

Purpose: Removes a programmer-defined ISR routine's address from of the timer-tick interrupt chain
of vectors.

Declaration: RemoveISRVector(Handle : Byte);

Parameter: Handle is the handle assigned to the current ISR returned by the call to AddISRVector.

Notes: As explained in the notes in AddISRVector, a programmer-defined ISR must interact with
TOPAZ before being called and chaining to the next ISR in the timer-tick chain. In order for
the programmer-defined ISR to be disabled, it must first make a call to RemoveISRVector,
supplying its assigned handle. See AddISRVector, RemoveISRVector, SuspendISRs,
ResumeISRs, and the section "Interrupt Service Routines in TOPAZ" in the Tutorial part of
this manual.

 TOPAZ Technical Reference 433

__

RenameFile procedure DBF4

Purpose: Renames a file or directory. Original file must not be open and the new filename or directory
must be a valid DOS filename that does not already exist.

Declaration: RenameFile(Filename, NewFilename : String);

Parameter: DOS filenames or directories.

Notes: A new filename must not specify a different drive. Use Set_AutoHalt_Off, DBFError and
Message for error recovery, as shown in example below.

Example 1: Set_AutoHalt_Off;
RenameFile('Customer.DBF','temp.DBF');
if DBFError > 0 then WriteLn(Message);

Example 2: if FileExists(Customer.DBF')
 and not FileExists('temp.DBF')
 and ValidFilename('temp.DBF')
 then RenameFile('Customer.DBF','temp.DBF')
else
 WriteLn('could not rename file');

 434 TOPAZ Technical Reference

__

REPLACE procedure DBF4

Purpose: Writes the contents of the user's record to the open and currently selected dBASE file at the
current record counter. Similar to REPLACE in dBASE. Unlike dBASE, REPLACE does
not require any fields to be specified. REPLACE always writes the contents of the entire user
record to the file. Thus to modify a record in a database you need only to change the content
of any or all fields in the user record and call REPLACE to write them back to disk.

Declaration: REPLACE;

Notes: REPLACE will make sure that string fields are padded with spaces as necessary to properly
fit the field structure. For instance, it is valid to set _Name := ' ' and then call REPLACE.
REPLACE will do all required data-type conversions from Pascal types to dBASE field
types.

Example: USE('customer', @customer, SizeOf(customer));
while not dEOF Do
begin
 if Customer._zip>5000 then
 Customer._Area := 'WEST'
 else
 Customer._Area := 'EAST';
 REPLACE;
 SKIP(1);
end;

 TOPAZ Technical Reference 435

__

REPLICATE function SAYGET4

Purpose: Returns a replicated string of characters. Emulates the REPLICATE function in dBASE.

Declaration: REPLICATE(C : Char; Times : Integer) : String;

Parameter: C is the character to be replicated to form a string of length Times.

Example: dashes := REPLICATE('-',80);
{returns a string consisting of eighty dashes}

 436 TOPAZ Technical Reference

__

ReportForm procedure REPORT4

Purpose: Sends a report of the currently selected database to the screen, printer, or disk file, using a
report form file generated by the REPGEN.EXE utility.

Declaration: ReportForm(ReportName : String);

Parameter: ReportName is the filename of the report form file with default extension RPT created by
REPGEN. ReportName can have the following additional clauses:
(NOTE: The double quotes are required)

TO PRINT. Sends report to print device.

TO SCREEN. Sends report to terminal (default).

TO FILE <filename>. Redirects report to an ASCII text file with a default extension of TXT.

MESSAGE = "<message string>". Displays the message string on terminal when
ReportForm is successfully accessing the print device.

BLINK. Blinks the message string.

HEADING = "<Heading string>". Causes ReportForm to center and display <Heading
String> as the first title line of the report on each page. This heading line is in addition to any
title lines specified by REPGEN.EXE. This clause allows the programmer to specify report
titles at run time.

PRECODE = "<Printer codes>". Sends <Printer codes> to the printer before the start of the
printable report. Can be used to initialize or condition a printer (such as selecting paper
orientation on a Laser printer), before the report begins printing. Codes are also sent to a text
file if TO FILE is specified. Codes are not sent to the console if TO SCREEN is specified. A
non-printable ASCII character is specified by embedding its decimal values in angle brackets.
See the predefined constants below for commonly used Laser printer codes.

POSTCODE = "<Printer codes>". Sends <Printer codes> to the printer after the completion
of the printable report. Can be used to reset or restore the condition of the printer. Codes are
also sent to a text file if TO FILE is specified. Codes are not sent to the console if TO
SCREEN is specified. A non-printable ASCII character is specified by embedding its decimal
values in angle brackets. See the predefined constants below for commonly used Laser printer
codes.

APPEND. Appends the report output to an existing file, as specified in the TO FILE clause.
If the file does not exist, ReportForm will create it.

 TOPAZ Technical Reference 437

PRINTER=LPTn. Specifies to which printer port (1..4), output will be sent, if the TO PRINT
clause is used.

PAGE=n. Specifies the starting page number.

Notes: A database must already be USEd and SELECTed. The report will start with the current
record and process each record until end of file. Deleted records are indicated with an asterisk
at the left of the record.

When using PRECODE and POSTCODE clauses, it is possible to use the following
predefined string constants:

LJPortrait = #27'&l0O'
LJLandscape = #27'&l1O'
LJLinePrinter = #27'(s0T'#27'(10U'#27'(s0P'#27'(s16.7H'
LJCourier = #27'(s3T'#27'(10U'#27'(s0P'#27'(s10H'
LJReset = #27'E'

If you want to print two reports on one page, all you do is call ReportForm twice, where
there is no page eject in the first report. However, since the second report doesn't "know" that
it is starting in the middle of the page (perhaps not even page 1), it will eject pages and print
page numbers that are all off. This behavior can be corrected with the CONNECT clause. It
works like this: if you include CONNECT as a clause in ReportForm, the report a) will not
print the date and time if in the middle of the page, b) will eject at the correct place on the
page, and c) will put the proper page number on the top of the next page. You can connect as
many reports as you like. There is a rule, however, that you must be aware of: In REPGEN
you should turn off "Eject After Report" in the first report (the one before the CONNECTed
report). Otherwise, the first report will eject the page and you will have gained nothing.
Similarly, you should turn off "Eject Before Report" in the CONNECTed report for exactly the
same reason. The two reports will then come out seamlessly.

If you want to continue after a ReportForm with a custom report, you can keep on printing
to the page, since the global variables PageNumber and LineNumber will let you know the
page number and line number that ReportForm left off at.

See also the section "The Report Generator" in the Tutorial part of this manual.

See Set_Report_Column_To.

Example 1: USE('customer',@Customer,SizeOf(Customer));
SET_INDEX_TO('customer',1);

Example 2: {send report to printer, and to file CUSTLIST.TXT}
ReportForm('customer TO PRINT TO FILE custlist');

Example 3: {send report to printer with special heading}
ReportForm('customer TO PRINT HEADING="January Sales"');

Example 4: {send report to printer with special Laser Jet codes to go into
Landscape orientation, line printer font}

 438 TOPAZ Technical Reference

ReportForm('customer TO PRINT PRECODE="<27>&l1O<27>(s0T"');
{or equivalently}
ReportForm('customer TO PRINT PRECODE="'+LJLinePrinter+'"');

Example 5: {append report to the file custlist.txt, start on page 2}
ReportForm('customer TO FILE custlist APPEND PAGE=2');

Example 6: {send report to LPT 2}
ReportForm('customer TO PRINT PRINTER=LPT2');

 TOPAZ Technical Reference 439

__

Required procedure SAYGET4

Purpose: This is a modifier to the SayGet procedure which makes the field referred to in SayGet
required input. The end-user is prevented from exiting the field until they make some entry
into it. In other words, blank fields are not allowed if Required is specified. The use of
<Ctrl-Q> or <Esc> (if enabled) will exit a Required input field and all subsequent fields above
a ReadGets statement.

Declaration: Required;

Notes: Required, like PICTURE and RANGE must follow the SayGet statement.

Example: SayGet(10,1,'Age ', _age, _I, 3, 0);
SayGet(10,2,'Zip Code ',_zip,_s,10,0);
Required;
SayGet(10,3,'Married ', _Married, _L, 1, 0);
ReadGets;
{of the three fields being read, _zip is Required data}

 440 TOPAZ Technical Reference

__

RequiredMemory function VFILES

Purpose: Returns size of memory which must be available to store a Virtual File in a specific type of
memory.

Declaration: RequiredMemory(MemoryType : String;
RecordCount : LongInt; RecordSize : LongInt)

: LongInt;

Parameters: MemoryType is a string that indicates what type of memory the programmer is interested in
determining the size requirements for. RecordCount is the number of records to be stored, and
RecordSize is the number of bytes in each record.

Notes: This function returns the amount of memory required to store the desired number of records
(RecordCount), each of a certain size (RecordSize), in the particular type of memory you are
considering. This is not always as easy as RecordCount * RecordSize, because Extended and
Expanded memory is allocated in "Pages", and a record must fit completly on a page. This
usually leads to some unused (and unusable) space at the end of each page. This function will
take all that into consideration, and tell you how much total memory must be available to store
the desired information.

Example: {determine size of memory in EMS to store 1000 records of a certain
length:}
if RequiredMemory ('EMS', 1000, SizeOf(MyRecord))
 <= AvailableMemory('EMS') then

begin ... {there is enough memory to store data in EMS}

 TOPAZ Technical Reference 441

__

ResetDefaultEditorKeys EDIT

Purpose: Restores the default Editor key map.

Declaration: ResetDefaultEditorKeys;

Notes: This procedure is used by the programmer to restore the key map of the Editor to its default
settings.

 442 TOPAZ Technical Reference

__

ResetFirstField procedure BROWSE4

Purpose: Permits a BROWSE "Calc" procedure to cause BROWSE to display a specified field in the first
data column of the BROWSE display.

Declaration: ResetFirstField (FieldNumber : Integer);

Parameter: FieldNumber is the number of the database field that is to become the first (left most) field in
the BROWSE display.

Notes: This routine can (should) only be called from a BrowseCalc routine. It allows you to realign
the Browse display by passing the real field number in the database. If you pass a field
number that is not currently allowed then nothing will happen.

 TOPAZ Technical Reference 443

__

ResetMouse procedure TZCOMMON

Purpose: Resets the Mouse driver and all Topaz Mouse management settings to their default conditions.

Declaration: ResetMouse;

Notes: Normally it is not necessary to call ResetMouse however it may be desirable to reset the
Mouse driver upon returning from running another program. Any Mouse target list will be
disposed of and the Mouse will be left "disabled" as if DisableMouse had been called and
everything will be ready for EnableMouse to be called.

Example: CloseDatabases;
SwapVectors;
Exec(GetEnv('COMSPEC')); { run another DOS shell }
SwapVectors;
ResetMouse;
OpenAllDatabases;

 444 TOPAZ Technical Reference

__

RestoreCalcConfig procedure TZCALC

Purpose: Recovers and resets the position of the pop-up calculator on the screen, if previously saved
by SaveCalcConfig.

Declaration: RestoreCalcConfig(Filename : PathStr);

Parameter: Filename is the name of the file previously stored by SaveCalcConfig. An error will be
generated if an invalid filename or non-existent file name is specified.

Notes: See SaveCalcConfig and associated example.

 TOPAZ Technical Reference 445

__

RestoreEditConfig procedure EDIT

Purpose: Restores all user-settable parameters in the TOPAZ editor for both memos and text editing
from the last saved session.

Declaration: RestoreEditConfig(Filename : String);

Parameter: Filename is any valid DOS filename from which the editor's configuration parameters will be
loaded. If the file does not exist, the editor will be set to its standard default parameters.

Notes: This procedure should be called before the first call to EditMemo or EditText.

The parameters that are loaded are the location and size of both the text and memo editing
windows, the help file name, default directory, default extension, printer settings, and wrap
settings.

See SaveEditConfig.

Example: RestoreEditConfig('myprog.cfg');
EditText('myfile.txt');

 446 TOPAZ Technical Reference

__

ResumeISRs procedure TZCOMMON

Purpose: Enables all Interrupt Service Routines (ISR) associated with the timer-tick interrupt ($1C)
that were disabled in the last call to SuspendISRs.

Declaration: ResumeISRs;

Notes: TOPAZ supports three forms of ISR routines that chain themselves into the timer-tick
interrupt ($1C): the clock, spooler, and screen saver. As a programmer, you may invoke some
or all of these routines in any order, and disable them in any order. Code in the TZCOMMON
unit exists to act as a "traffic cop" with regard to the assignment and restoration of the timer-
tick interrupt chain vectors. All of this is handled internally and is transparent to you. If you
wish to add your own ISR to the interrupt chain, however, it must be done with calls to
TOPAZ. When all ISRs are to be suspended (as, for example, when swapping to DOS), the
application can call SuspendISRs to unhook (but remember) the position of all active ISRs
in the timer-tick chain. After returning from DOS, the application can call ResumeIRSs to
fully store the operation of all ISRs formerly in effect. See AddISRVector, ChainISRAddress,
RemoveISRVector, SuspendISRs, and the section "Interrupt Service Routines in TOPAZ" in
the Tutorial part of this manual.

 TOPAZ Technical Reference 447

__

ResumeProgress procedure DIALOG

Purpose: Permits the programmer to resume the growth of the progress bar, for certain applications
where the database file is sequentially processed, but may need to SKIP or GO to other
records from time to time.

Declaration: ResumeProgress;

Notes: See Set_Progress_On, SuspendProgress.

Example: See example for SuspendProgress.

 448 TOPAZ Technical Reference

__

RingBell procedure SAYGET4

Purpose: Sounds the bell specified by the Set_Bell_To procedure.

Declaration: RingBell;

Notes: If Set_Bell_To specifies a bell sound, ReadGets will automatically ring the bell when data
entry fields are filled. RingBell can be used by the programmer for warning messages, for
example. See Set_Bell_To.

Example: Set_Bell_To(100,2,25);
.
.
.
if not FileExists('Customer.DBF') then
begin
 RingBell;
 WriteLn('Customer file is missing!');
end;

 TOPAZ Technical Reference 449

__

RLOCK function DBF4/NET

Purpose: Returns True if it is possible to lock the current record of the database open in the current
work area. Returns False if the record or file is already locked by another user.

Declaration: RLOCK : Boolean;

Notes: Either RLOCK or FLOCK must be used when replacing records in a shared file. Once
locked, the record may be unlocked by calling UNLOCK, closing the file, or terminating the
program. Always call UNLOCK before attempting to issue another lock of any type. See
FLOCK, ALOCK, UNLOCK, Set_Retry_To, Set_NetError_To.

Example: repeat until RLOCK;
REPLACE;
UNLOCK;

 450 TOPAZ Technical Reference

__

SaveCalcConfig procedure TZCALC

Purpose: Stores the current location of the TOPAZ pop-up calculator to a file.

Declaration: SaveCalcConfig(Filename : PathStr);

Parmameter: Filename is a valid DOS filename that SaveCalcConfig will write to.

Notes: The end-user is free to move the calculator on the screen, but the new position will not
automatically "stick" the next time the program is run. By using SaveCalcConfig and
RestoreCalcConfig, the end-user can position the calculator to his/her liking once and the
calculator will pop-up in that position on all following runs of the application. Alternatively,
you may save and restore the values of the calculator's upper left corner yourself (in a
configuration DBF file, for example). The bytes CalcX1 and CalcY1 are global public vars
for this purpose. To save the position of the calculator, read and store the values of CalcX1
and CalcY1. To restore the position of the calculator, you must use the Set_CalcWindow_To
procedure, passing it the values you saved. If you save and restore the calculator's position
yourself, there is no need to call RestoreCalcConfig or SaveCalcConfig.

Example: if FileExists('calc.cfg') then RestoreCalcConfig('calc.cfg');
Results := Calculator('',10,2);
SaveCalcConfig('calc.cfg');

 TOPAZ Technical Reference 451

__

SaveEditConfig procedure EDIT

Purpose: Saves all user-settable parameters in the TOPAZ editor for both memos and text editing.

Declaration: SaveEditConfig(Filename : String);

Parameter: Filename is any valid DOS filename, to which the editor's configuration parameters will be
saved. If the file does not exist, one will be created, otherwise the file will be overwritten.

Notes: It is suggested that the configuration file be given a CFG extension to clearly identify its
purpose. This procedure can be called after each call to EditText or EditMemo, but need only
be called once when the application returns to DOS.

The parameters that are saved are the location and size of both the text and memo editing
windows, the help file name, default directory, default extension, printer settings, and wrap
settings. These are the defaults and settings established by the end-user while in the editor at
runtime.

See RestoreEditConfig.

Example: EditText('myfile.txt');
SaveEditConfig('myprog.cfg');

 452 TOPAZ Technical Reference

__

SayGet procedure SAYGET4

Purpose: This is the heart of the SayGet routines. With this procedure you can create data entry screens
which behave like dBASE, just as if you were using the "@ row,col SAY prompt GET
variable" syntax in dBASE.The difference is that you must tell the procedure what type
variable you are "getting" and you must also tell it the length and how many places for
decimals even if the variable is a not of type Real. Notice that the screen coordinates are
reversed from the dBASE format to conform with Pascal's convention [unless you use the
command Set_Coordinates_To (dBASE)]. The supported data types and symbols for the
variables you can pass to SayGet are:

_B Byte
_C Char
_D Date {must always be TYPE string10 }
_I Integer
_L Boolean (logical)
_LI LongInt
_M MemoField
_Password String
_R Real
_S String
_SI ShortInt
_Static Static
_T Time
_W Word

If you don't want a "prompt" to the left of your input variable, (as when using SAYWHAT?!
screens which may have the prompt text built into the screen) just specify an empty string ''
as the prompt parameter.

Declaration: SayGet(Col, Row : Byte;
 Prompt : String;
 var GetVariable;
 Typ : VarTypes;
 FieldWidth : Byte;
 Decimals : ShortInt);

Parameter: Col (column) and Row define where the "SAY" part of the statement will be placed on the
screen. Prompt will then be written. GetVariable is the name of the variable you wish to
"GET", and Typ is its type as defined above. FieldWidth sets the on-screen field width for that
variable, and Decimals indicates the number of decimal places for numeric input.

Notes: SayGet does not itself allow data input and editing. It only serves to specify a data field for
a later ReadGets. The order of the SayGet statements defines the order in which fields will

 TOPAZ Technical Reference 453

be edited, regardless of the position of the data field on the screen. SayGets that are pending
a ReadGets can be cancelled by a call to ClearGets.

When you specify a field width for a string variable greater than zero, the variable will be
returned with that length (and padded with spaces if the data does not fill the field). However
if you specify a field width parameter of zero for a string variable, the existing length of the
string will be used to determine the field width and the returned string will be returned with
the original length that it had before processing by SayGet. Additionally, if you specify a
non-zero value for decimals for a string variable, the variable will be returned trimmed of
leading and trailing spaces.

WARNING: In the SayGet and PICTURE procedures, do not specify a field width or
PICTURE template for a string variable which is larger than the length specified for that
variable in the original var declaration of your program. If you do so, SayGet will overwrite
one or more variables following that string without warning. It is perfectly alright to specify
a field width or PICTURE smaller than that declared in the var section. An example of this
error is:

var FirstName : String20;
SayGet(10,10,'Enter first name: ',FirstName,_S,33,0);

this is WRONG. Specifying 33 characters as the width of FirstName, declared as string20,
will corrupt memory!

The correct usage is:

SayGet(10,10,'Enter first name: ',FirstName,_S,20,0);

or SayGet(10,10,'Enter first name: ',FirstName,_S,16,0);

WARNING: All SayGet data is stored on the heap. If where is not enough memory available,
a message will be displayed where the SayGet variable should have been on the screen.

IMPORTANT RULE: If you pass local variables to the SayGet procedure, either ReadGets
or ClearGets MUST be called before exiting the procedure in which the local vars were
declared. This is unlike global variables where the ReadGets and ClearGets statements may
appear anywhere in the program.

IMPORTANT RULE: Always pass the variable type (_S, _I, _B, etc.) that actually matches
the variable type you are passing for data entry. By the same token, don't pass a width
parameter for a variable that exceeds that variable's declaration. Not following this rule may
cause the ReadGets statement to overflow the memory space of the variable and corrupt the
stack or data space.

If SayGet is passed a numeric variable that is too large to fit in the specified width, SayGet
will display asterisks instead. Input will still be possible, but if no new value is input, the
variable will be given a value of zero.

 454 TOPAZ Technical Reference

When a memo field is passed to SayGet, the TOPAZ MEMO unit must be linked in (i.e.,
appear in your Uses statement). The GET portion of a memo field appears as the word
"memo" for empty memos, and "MEMO" for non-empty memos. When the cursor is in a
memo field, the end-user may display and edit the memo by pressing <Ctrl-Home>. The memo
editor, in a window and colors defined by Set_MemoWindow_To and Set_Memo_Color_To,
will be popped up. Pressing the <Esc> key will abandon any changes made in the memo editor,
<Ctrl-End> will save changes. See the sample program MEMODEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s) for an example of programming
SayGet with memo fields.

_Static data type: If a call to SayGet is followed by a call to the NoEdit procedure it causes
the data in that SayGet to be displayed, but the cursor will jump over the field in a ReadGets
session. You may wish for another type of behavior: the cursor can enter the data field, and
all hot keys are active, but editing is not allowed. The _Static data type supports this type of
behavior (see Example 2).

FuzzyDate: "Fuzzy dates" are handy, when a date needs to be entered and the exact date is not
known. All you have to do is make the decimals parameter in SayGet 64 (or use the constant
FuzzyDate). After that you can enter question marks for any unknown digit or digits in a date.
You can also enter "00" for any unknown month, day, or year. In addition, if you only type in
the two digit year in a ten digit (century on) date, the century will be added for you. If you
leave the year off completely the current year will be added for you automatically. See
Example 3 below.

_Password: To add password support to your applications use _Password as the data type.
At run-time, this will result in a visible Get field which only shows '*' for each character
entered. The actual characters entered are put into the variable. The variable can be any string
var. See Example 4 below.

See ReadGets, ClearGets, PICTURE, RANGE, Required, Set_FKey, Set_AutoHelp_To,
Set_Validate_To, Set_Coordinates_To, Set_Delimiters_To, NoEdit, SET_COLOR_TO.

Example 1: SayGet(10,5,'Enter last name:',lastname,_S,30,0);
SayGet(23,1,'',zipcode,_W,5,0);
SayGet(col,row+1,'Married? ',maritalstatus,_L,1,0);
SayGet(1,1,'Enter Phone Number: ',phone,_S,14,0);

PICTURE('(999) 999-9999');
ReadGets;

Example 2: {the var Dept is displayed, but the cursor jumps over this field}
SAYGET(10,10, 'Department: ', dept, _S, 10, 0); NoEdit;

{the var Dept is displayed, the cursor enters the data field and any hot
keys previously defined are active, but editing the data is not allowed}
SAYGET(10,10, 'Department: ', dept, _Static, 10, 0);

Example 3: SayGet(10,10,'Enter a fuzzy date: ',mdate,_D,10,FuzzyDate);
ReadGets;
{ Input: Output:

'01/??/1992' '01/??/1992'
'1?/23/92' '1?/23/92'

 TOPAZ Technical Reference 455

'12/31/??' '12/31/??'
'01/01/ ' '01/01/92' { century off}
'01/01/ ' '01/01/1992' { century on }
'01/01/92 ' '01/01/1992' { century on }

Example 4: SayGet(10,10,'Enter your password: ',mpass, _Password, 10, 0);
ReadGets;

 456 TOPAZ Technical Reference

__

SBoolean function SAYGET4

Purpose: Returns a char, either 'Y' or 'N', depending on the value of the boolean parameter passed to
it.

Declaration: SBoolean(X : Boolean) : Char;

Parameter: X is a boolean variable

Notes: The values returned by SBoolean are affected by Set_Country_To. See Set_Counrty_To.

Example: At(5,7,'The response was:' + SBoolean(response));

 TOPAZ Technical Reference 457

__

ScreenEdit procedure SCRENGET

Purpose: Performs all the functions of allocating memory for the data field information embedded in a
SAYWHAT?! data entry screen, displaying the screen, managing the data entry process, and
releasing memory at the completion of data entry.

Declaration: ScreenEdit(ScreenName : String10; MemoryLoc : Pointer;
LibraryNo : Byte; ScreenMode : ScreenGetMode;

UserCallBack : Pointer);

Parameters: ScreenName identifies the SAYWHAT?! data entry screen.

MemoryLoc and LibraryNo are used to identify the source of the SAYWHAT?! screen that
contains the field information, according to the following table:

MemoryLoc LibraryNo Source of Field Information

Nil 0 Disk file named ScreenName (with default
extension SQZ)

Nil n Disk file screen library that has been
opened in area "n" with the OpenLibrary
procedure

Address 0 Memory location where the SAYWHAT?!
screen in stored (screen that has
been linked into your program or
loaded onto the heap using a call
to PopScreen)

Address n Memory location where SAYWHAT?!
screen library is stored (library
that has been linked into your
program or loaded onto the heap,
using a call to PopLibMem)

ScreenMode identifies the action that is to take place. If ScreenMode is either AddMode or
EditMode then data fields are displayed and user will be allowed to edit those fields. If
ScreenMode is set to DisplayMode, then data fields are displayed and control returns
immediately to the calling procedure.

UserCallBack is a pointer to a user-defined procedure that will be called for each data entry
field, allowing your program to specify validation and autohelp routines. The global pointer
DataDefinition will point to a record that identifies the field. When your call-back routine is
called, the DataDefinition record will be set to:

DataDefinition^.DBFAlias := DBFAlias;
DataDefinition^.FieldName := FieldName;

 458 TOPAZ Technical Reference

DataDefinition^.Row := Row;
DataDefinition^.Column := Column;

(all other fields in the record will be empty). The user callback routine would then typically
use DBFAlias and FieldName (trimmed and uppercased) to identify the data field, and then
set the following fields in DataDefinition^ as appropriate:

AutoHelpPtr (pointer to your autohelp routine)
ValidatePtr (pointer to your Validation routine)
NoEdit (Boolean)
BlankField (Boolean)
Required (Boolean)
Picture (String PICTURE clause)
LoRange (String low range clause)
HiRange (String high range clause)

Notes: ScreenEdit combines the action of three other routines in the SCRENGET unit:
LoadScreenGets, DoScreenGets, and ClearScreenGets, as well as being responsible for the
display of the SAYWHAT?! screen image. Hence ScreenEdit is a simple programming
method that permits you to display a complex data entry screen and edit fields with just a
single line of code.

See also LoadScreenGets, ClearScreenGets, DoScreenGets.

Example: {three line program to open a database (customer.dbf), display a
SAYWHAT?! screen (customer.sqz), edit fields of the first record in the
file, and save the new data to disk:}

USE('Customer', @Customer, SizeOf(Customer));
ScreenEdit('Customer', 0, Nil, EditMode, Nil);
REPLACE;

 TOPAZ Technical Reference 459

__

ScreenFieldCount function SCRENGET

Purpose: Returns the number of data entry fields in the current ScreenEdit or DoScreenGets editing
session.

Declaration: ScreenFieldCount : Byte;

Notes: The function can only be called by an autohelp or validation routine, since that is the only time
there is a "current editing session". The data entry field count excludes any SAY fields that
were defined on the screen, and is equivalent to the SGFieldCode for the last field on the
screen. This function can be useful for detecting the last screen field and performing some
special action, (like looping back to the first field).

 460 TOPAZ Technical Reference

__

ScreenFieldNames procedure SCRENGET

Purpose: Returns the DBF alias and field name of the current data entry field during a DoScreenGets
or ScreenEdit session.

Declaration: ScreenFieldNames(var ThisDBF : String10;
var ThisField : String10);

Parameters: ThisDBF returns the DBF Alias for the current data entry field. The string is trimmed and
uppercased. ThisField returns the dBASE field name of the current data entry field. The string
is trimmed and uppercased.

Notes: The ScreenFieldNames procedure is normally used in an autohelp or validation procedure
to determine what the current data field is. See the notes under Set_ScreenHelp_To and
Set_ScreenValidate_To.

__

ScreenFieldNo function SCRENGET

Purpose: Returns SGFieldCode of the current data entry field during a DoScreenGets or ScreenEdit
data entry session.

Declaration: ScreenFieldNo(ThisDBF : String10; ThisField : String10)
: Byte;

Parameters: Before ScreenFieldNo is called, ThisDBF and ThisField are set to the (trimmed upper cased)
database Alias and FieldName respectively, as specified in the screen file for the current
editing session.

Notes: ScreenFieldNo can only be called from inside an autohelp or validation routine since that is
the only time there is a "current editing session". Typically, this would be used by an autohelp
or validation routine that needs to know the SGFieldCode of some field other than the current
one.

 TOPAZ Technical Reference 461

__

Search procedure DBF4

Purpose: Searches for a specified string of characters in a database file.

Declaration: Search(S : String; var FieldNo : Byte;
StartAtTop : Boolean);

Parameters: S is the string to search for in the database of the currently selected work area. FieldNo
restricts Search to look for S only in a specific field number. Setting FieldNo to zero permits
Search to look for S anywhere in the database. If FieldNo is set to zero, Search will return
FieldNo set to the field number where S was found.

StartAtTop specifies whether Search is to begin looking for S from the physical start of the
file, or is to begin looking from the start of the record immediately after the current record.

Notes: This is a fast LOCATE that will find a string in any field. It uses the Boyer-Moore algorithm
to look for the string and if it is found, Search will position the database on the correct record
and tell you what field the string was found in. If no match was found, the database will be
positioned right where it started and the value of the FieldNo parameter will be zero. This
procedure does not know about indexes and searches the file sequentially as if by record
number. Searches are not case sensitive. Search will ignore records that are excluded from
view by a filter. Also, it will ignore deleted records if Set_Deleted_On has been called.

Search routine will advance the rotor (if enabled) for every block of data (up to 64K) it reads
in from the file.
Search is very fast! In our tests, we found a string at the end of a 400k DBF in 3 seconds (or
slightly less) with an 8mhz machine and the data on a local hard disk. It took 6 seconds with
the data on the network.

See Set_Search_To, SearchFile, Peek

 462 TOPAZ Technical Reference

Example 1: {Search for the first occurrence of the string 'G. Willikers' in the
customer file, starting at the top of the file:}

var SearchField : Byte;
FromTop : Boolean;

.

.

.
USE('customer', NIL, 0);
SearchField := 0; { search every field }
FromTop := True;
Search ('G. Willikers', SearchField, FromTop);
if SearchField = 0 then
 begin
 {string was NOT found}
 end
else
 begin

{string WAS found..file is positioned to the found record, and
SearchField gives the number of the field containing the desired
string}

 end;

Example 2: {as above, but continue to search until no more records with the key
string are found}

FromTop := True;
repeat
 Search('G. Willikers', SearchField, FromTop);
 if SearchField >0 then
 begin
 {string was found, and file is positioned}
 FromTop := False;
 end;
until SearchField = 0; {continue to Search through the file until

Search fails to find a match}

 TOPAZ Technical Reference 463

__

SearchFile procedure DBF4

Purpose: Searches for a specified string of characters in a DOS file.
Declaration: Searchfile (FileName, S : String; var Offset : LongInt);

Parameters: FileName is the name of the DOS file to be searched. S is the ASCII string to be searched for.
Offset is the byte offset into the file where the string S is found.

Notes: SearchFile returns the byte offset of the search string if found, otherwise it returns zero.

SearchFile uses the same assembler routine that Search uses, and works with any kind of file.

IMPORTANT: The target file must not be open.

If there is currently a user routine specified with Set_Search_To that routine will be called for
each "hit" found. The global variable ExitSearch can be set by the user routine to tell
SearchFile to stop searching.

See Set_Search_To.

Example: uses DBF4;
var Offset : Longint;

begin
 { search any file type, file must not already be open }
 SearchFile('MYFILE.DAT','Hello World',Offset);
 if Offset > 0 then
 Writeln('"Hello World" found at offset

'+Sinteger(Offset,0)+' in MYFILE.DAT')
 else
 Writeln('"Hello World" not found in MYFILE.DAT');
end.

 464 TOPAZ Technical Reference

__

SELECT procedure DBF4

Purpose: It is possible to open up to 25 databases at a time as long as each is opened in its own
workarea. To change workareas simply call SELECT(n) where n may be any number from
0 to 25. Equivalent to SELECT in dBASE.

Declaration: SELECT(Area : Byte);

Parameter: Area identifies the workarea to select. The valid range of area is 0 to 25.

Notes: By creating an alias type, the parameter passed to SELECT can be symbolic. See the example
below. Specifying 0 causes SELECT to pick the next available (unused) work area. This is
useful for writing procedures and utilities that require a dedicated work area for the duration
of the procedure, where the work area can be relinquished after the task is complete, and the
former work area can be re-selected. If there is no available work area, an error is generated.
The currently selected area number can be determined by use of the CurrentArea function.
Note that there is no work area 0 and successive calls to SELECT(0) may select different
work areas.

If you move from one work area to another, and return to the original area, the following will
remain unchanged: Database file that is open, record number (unless record pointer has been
moved by a relation from another area), indexes that are open and primary index, filter (as set
by SET_FILTER_TO), and relation (as set by
SET_RELATION_TO).

See USE, CurrentArea, SelectAlias.

Example: SELECT(1);
USE('customer',@customer,SizeOf(customer));
SELECT(2);
USE('vendors',@vendor,SizeOf(vendor));

{Or, use constants:}
const
 customer = 1;
 vendors = 2;

 { continued on the next page... }

 TOPAZ Technical Reference 465

{so that the SELECT procedure can appear as:}
SELECT(customer);
SKIP(1)
SELECT(vendors);

{Example of SELECT(0):}
PriorArea := CurrentArea;
SELECT(0);
USE('TempFile', @TempRec, SizeOf(TempRec));
while not dEOF do
begin
 {process data here}
 SKIP(1);
end;
USE('',Nil,0);
SELECT(PriorArea);

 466 TOPAZ Technical Reference

__

SelectAlias procedure DBF4

Purpose: Allows selecting a database by its alias name rather than workarea number.

Declaration: SelectAlias(Alias : String10);

Parameter: The string parameter must be an existing alias name, and case will be ignored.

Notes: SelectAlias is a way to specify the current workarea by a name, rather than SELECT, which

selects workarea by number. The default alias name is the database filename without
extension, although the programmer can set the alias to any 10 char string at the time the file
is opened.

SelectAlias cannot be used to select a work area unless there is a data file open in that work
area. (If no file is open, there is no alias.) Thus, you cannot choose a work area with
SelectAlias unless you have previously used SELECT and USE to open a file in that work
area.

See ALIAS, Set_Alias_To, SELECT, USE.

Example: USE('YEAR1989', @WorkYear, SizeOf)WorkYear));
Set_Alias_To(WorkYear');
.
.
.
SelectAlias('WorkYear');
{process the file}

 TOPAZ Technical Reference 467

__

SelectClock procedure CLOCK

Purpose: Eight clocks and timers are available in TOPAZ, each in its own area (similar to databases).
SelectClock chooses the clock area in order to set the location, attributes, and format for the
clock in the specified area.

Declaration: SelectClock(Area : Byte);

Parameter: Area is in the range of 1..8.

Notes: See Set_ClockColor_To, Set_Clock_Format_To, Set_Clocks_On, Set_Clock_To.

Example: {set the colors for clocks 1 and 2}
SelectClock(1);
Set_Clock_Color_To(White, Blue);
SelectClock(2);
Set_Clock_Color_To(Black, Red);

 468 TOPAZ Technical Reference

__

SelectDate function TIMEDATE

Purpose: Displays an interactive one-month calendar and returns the date selected by the end-user.

Declaration: SelectDate(D : String) : String10;

Parameters: D should be a valid date. A missing or invalid date will result in SelectDate starting with the
DOS system date. The date D is the starting date for the interactive calendar.

Notes: The month calendar will be displayed at the location specified by Set_Calendar_To.
Calendars are displayed using the color settings specified by Set_Color_To (unit SAYGET4).
The position of the upper left corner of the calendar and the color of the highlighted day is
defined by calling Set_Calendar_To().

The cursor keys are used to change the day, month, or year. The key commands are:

<Right-Arrow> - Increment day
<Left-Arrow> - Decrement day
<Down-Arrow> - Increment week
<Up-Arrow> - Decrement week
<PgDn> - Increment month
<PgUp> - Decrement month
<End> - Increment year
<Home> - Decrement year
<Enter> - Return the highlighted date
<Escape> - Abandon (returns an empty string)

Additionally the following keys will be active in the calendar.

<M> go to the beginning of the Month, or if on the first day of the month, go to the first
day of the previous month.

<H> go to the end of the month, or if the on the last day of the mont, go to the last day of
the next month.

<Y> go the the first day of the year, or if on the first day of the year, go to the first day of
the previous year.

<R> go the last day of the year, or if on the last day of the year, go to the last day of the
next year

<+> advance 1 day

 TOPAZ Technical Reference 469

<-> advance 1 day

The rationale for these keystokes is "M" is the first letter of "Month", "H" is the last letter of
"Month" and so on. If the country code is not American or British, the keystokes work as
follows:

German: (M)ona(t) (J)ah(r)
Italian: (M)es(e) (A)nn(o)
Spanish: (M)e(s) (A)ñ(o)

 French: (M)oi(s) (A)nné(e)
Russian: #172 #230 #163 #164 (lowercase)

The date string can be followed by clauses which can customize the operation of the calendar.
These clauses are:

FREEZEYEAR - restricts movement to current year
FREEZEMONTH - restricts movement to current month
FREEZEWEEK - restricts movement to current week
FREEZEDAY - restricts movement to current day of week
NORESTORE - underlying screen will not be restored

These clauses may be combined in a single call to SelectDate. See also Set_Calendar_To,
DisplayCalendar.

Example 1: {pop up a calendar with the current month}
Date := SelectDate(SystemDate);

Example 2: {pop up a calendar with a literal date}
Date := SelectDate('04/15/89');

Example 3: {pop up a calendar, for one month only}
Date := SelectDate('04/15/89 FREEZEMONTH');

Example 4: {pop up a calendar, for Tuesdays only}
Date := SelectDate('11/14/89 FREEZEDAY');

Example 5: {pop up a calendar, for Tuesdays only in November 1989}
Date := SelectDate('11/14/89 FREEZEDAY FREEZEMONTH'+

' FREEZEYEAR');

Example 6: {Freezing a week is a little tricky since if you don't also freeze year
and month it is somewhat ambiguous. If the month or year is changed the
actual week that is frozen will be unpredictable. Thus it is best to use
the following construction:

Date := SelectDate('FreezeWeek FreezeMonth FreezeYear');

Another modifier is NORESTORE which tells SelectDate not to restore the
portion of the screen that was covered by the calendar

Date := SelectDate(SystemDate+'NORESTORE');

 470 TOPAZ Technical Reference

SelectDate permits the end-user to select any date, regardless of
whether CENTURY is set ON or OFF. If CENTURY is OFF, however, all dates
are returned as MM/DD/YY. For example:

PROCEDURE CALLLED: USER SELECTS: SELECTDATE RETURNS:
================== ============= ===================
SET_CENTURY_ON 12/12/1992 12/12/1992
SET_CENTURY_ON 12/12/2092 12/12/2092
SET_CENTURY_OFF 12/12/1992 12/12/92
SET_CENTURY_OFF 12/12/2092 12/12/92

Notice that after calling SET_CENTURY_OFF, the date returned may be
ambiguous. The table below displays the range of dates:

PROCEDURE CALLED RANGE OF DATES
==
SET_CENTURY_ON 0001 AD - 9999 AD
SET_CENTURY_OFF 1901 AD - 1999 AD

The calendars will not operate correctly when dates are in ANSI format.}

 TOPAZ Technical Reference 471

__

SendMemo procedure MEMO

Purpose: Sends the contents of a memo to the alternate device.

Declaration: SendMemo(MemoField : LongInt);

Parameter: MemoField is the memo field in the database to be directed to the alternate device.

Notes: If none of the alternate devices are set (by calling SET_CONSOLE_ON,
SET_ALTERNATE_ON, or SET_PRINT_ON), the memo goes to the "bit bucket". The syntax
is intended to parallel that for SendPage and PrintPage. See DisplayMemo,
Set_MemoWidth_To, PrintMemo.

Example 1: {equivalent to PrintMemo}
USE('customer', @customer, SizeOf(customer));
SET_PRINT_ON;
SendMemo(customer._NOTES);
SET_PRINT_OFF;

Example 2: {copy memo to a file called "MyFile.Txt"}
USE('customer', @customer, SizeOf(customer));
SET_ALTERNATE_TO('myfile');
SET_ALTERNATE_ON;
while not dEOF do
 begin
 SendMemo(customer._NOTES);
 SKIP(1);
 end;
SET_ALTERNATE_TO(''); {close file MyFile.TXT}

 472 TOPAZ Technical Reference

__

SendPage procedure TZPRINT

Purpose: Sends the AtPrint page to the Alternate device(s).

Declaration: SendPage;

Notes: SendPage is similar to PrintPage except that PrintPage output will always go to the printer
as well as any "alternate" device. If Set_Console_On is in effect, AtPrint output will go the
screen. If Set_Print_On is in effect AtPrint output will go the printer. If an alternate file has
been designated with Set_Alternate_To and Set_Alternate_On is in effect, AtPrint output will
go the alternate file.

 TOPAZ Technical Reference 473

__

Set_Alias_To procedure DBF4

Purpose: Permits changing the default database alias name.

Declaration: Set_Alias_To(NewAlias : String10);

Parameter: NewAlias may be a string of up to 10 characters which must not be the same as any other
database alias.

Notes: Database aliases are established automatically from the filename of a database when the file
is opened with the USE command. When writing generic routines to process a file where the
filename may not always be the same it is convenient to specifically change the alias to a
standard name. Alias names are not case sensitive, thus "MyFile" is considered the same as
"MYFILE".

See ALIAS, SelectAlias, USE, SELECT.

Example: datafile := 'YEAR1989.DBF';
USE(datafile,@FullYear,SizeOf(FullYear));
Set_Alias_To('ThisYear');
.
.
.
SelectAlias('ThisYear');
{ process the file }

 474 TOPAZ Technical Reference

__

SET_ALTERNATE_ON procedure TZPRINT

Purpose: Enables appending text data to the file opened with SET_ALTERNATE_TO(filename).

Declaration: SET_ALTERNATE_ON;

Notes: See example under SET_ALTERNATE_TO.

__

SET_ALTERNATE_OFF procedure TZPRINT

Purpose: Disables appending text data to the file opened with SET_ALTERNATE_TO(filename).

Declaration: SET_ALTERNATE_OFF;

Notes: Does not close the alternate file. This is the default setting. See example under
SET_ALTERNATE_TO.

 TOPAZ Technical Reference 475

__

SET_ALTERNATE_TO procedure TZPRINT

Purpose: Opens a text file device driver with the filevar alternate. Once the alternate device is open,
output can be directed to disk (and simultaneously to the console and/or the printer). Output
to the disk file is activated with SET_ALTERNATE_ON and deactivated with
SET_ALTERNATE_OFF. ALTERNATE may be set ON and OFF any number of times during
a work session.

Declaration: SET_ALTERNATE_TO(Filename : String);

Parameter: Filename is any valid DOS filename. If no extension is given, an extension of TXT will be
provided. If a file already exists, it will be overwritten. The Filename parameter can be
modified, however, with the clause APPEND, causing the data to be added to end of the text
file. If the file doesn't exist, it will be created. Setting Filename to the empty string ('') will
cause the file to be closed. Passing a null string parameter to SET_ALTERNATE_TO will
close the text file.

Notes: Does not affect or echo console output from At, WAIT, or SayGet. See
SET_ALTERNATE_ON/OFF,
SET_PRINT_ON/OFF, SET_CONSOLE_ON/OFF.

Example: SET_ALTERNATE_TO('myfile'); {Open the alternate device}
SET_ALTERNATE_ON; {Write the file MYFILE.TXT, only}
WriteLn(alternate,'This goes to myfile.txt');
WriteLn(alternate,'So does this');
SET_ALTERNATE_OFF
SET_ALTERNATE_TO('myfile APPEND'); {Append to file MYTEXT.TXT}
SET_ALTERNATE_ON; {Write to the text file and the printer}
SET_PRINT_ON;
WriteLn(alternate,'This goes to both file and printer');
SET_PRINT_OFF;
WriteLn(alternate,'This goes to the file only');
SET_PRINT_ON;
SET_ALTERNATE_OFF;
WriteLn(alternate,'This goes to the printer only');
{Write to the text file, printer, and console at the same time with only
one WriteLn statement:}
SET_ALTERNATE_ON;
SET_PRINT_ON;
SET_CONSOLE_ON;
WriteLn(alternate,'This goes to ALL 3 devices now:');
WriteLn(alternate,'File, Printer, and Screen!');
SET_ALTERNATE_TO(''); {Closing the alternate device:}

 476 TOPAZ Technical Reference

__

Set_ASCII_On procedure SAYGET4

Purpose: Prevents non-printable characters from being entered during SayGet/ReadGets sessions.

Declaration: Set_ASCII_On;

Notes: The Set_ASCII_On condition remains until set off with the Set_ASCII_Off procedure.
See SayGet, ReadGets, Set_ASCII_Off.

__

Set_ASCII_Off procedure SAYGET4

Purpose: Allows non-printable characters to be entered during SayGet/ReadGets sessions.

Declaration: Set_ASCII_Off;

Notes: This is the default setting. See SayGet, ReadGets, Set_ASCII_On.

 TOPAZ Technical Reference 477

__

Set_AutoHalt_On procedure DBF4

Purpose: Instructs TOPAZ units to halt with a descriptive error message when an error condition is
detected. Errors may be detected during disk I/O or with incorrect/invalid usage of TOPAZ
routines.

Declaration: Set_AutoHalt_On;

Notes: AUTOHALT ON is the default condition. Your code is not required to test the global

DBFError after database operations. It is recommended that none of your exit procedures
clear the screen, so that any error messages generated by TOPAZ will remain on the screen
for viewing. See Set_AutoHalt_Off.

 478 TOPAZ Technical Reference

__

Set_AutoHalt_Off procedure DBF4

Purpose: Instructs TOPAZ units to set the value of DBFError and return to the calling program when
an error condition is detected. Errors such as "File not found", "Disk Full", "Not a dBASE
file", etc., can occur during the execution of certain database functions and procedures.

Declaration: Set_AutoHalt_Off;

Notes: Your program must check DBFError after each call to a routine in the DBF4 unit or INDEX4

unit that performs disk I/O to determine whether an error has occurred. Your program must
declare the TZCOMMON unit in the "uses" statement in order to access the DBFError
variable.

An example of an error handler that can be used to evaluate DBFError is contained in
ONERROR.INC in the SAMPLES.ZIP file on the TOPAZ distribution disk(s).
See Set_AutoHalt_On, MESSAGE.

Example: Set_AutoHalt_Off;
SET_INDEX_TO(@Keymaker, 'MYLIST.IND', 1);
{ if index file does not exist, or is detected to be corrupted, build a
new index file}
if DBFError >) then
 begin
 WriteLn('Indexing MYLIST...');
 MakeIndex(@KeyMaker, 'MYLIST');
 Set_AutoHalt_On;
 SET_INDEX_TO(@KeyMaker, 'MYLIST.IND', 1);
 end;
else
 Set_AutoHalt_On;

 TOPAZ Technical Reference 479

__

Set_AutoHelp_To procedure SAYGET4

Purpose: Specifies a programmer defined procedure which must be declared FAR, to be executed
whenever the end-user enters a SayGet data entry field. Set_AutoHelp_To can be defined for
each SayGet field if necessary.

Declaration: Set_AutoHelp_To(Proc : Pointer);

Parameter: Proc is a pointer to a FAR user-defined procedure.

Notes: The user-defined procedure can use the global byte SGFieldCode to determine which field the

cursor is currently in. The procedure can access data in the current field by using the global
pointer SGBuffer, which is a pointer to a string type. All other fields can be accessed directly.

See the example below for a brief overview of Set_AutoHelp_To. See the demo program
SGDEMO.PAS in the SAMPLES.ZIP file on the TOPAZ distribution disk(s) for more
complete and elaborate examples.

Set_AutoHelp_To is a mechanism to obtain control when the end-user enters a data field.
The TOPAZ procedures Set_Validate_To and Set_FKey provide ways to gain control when
the end-user exits a data field, and when a function key is pressed, respectively. See
Set_Validate_To, Set_FKey.

Example: {$F+} {Define the procedure as FAR}
procedure HelpIsOnTheWay;
begin
 case SGFieldCode of
 1: At(24,1,'Enter Employee, Last Name First');
 2: At(24,1,'Enter company department code');
 end;
end;
{$F-}
begin
 {This field will be given a SGFieldCode of 1}
 SayGet(1,1,'Name: ',Name,_S,20,0);
 Set_AutoHelp_To(@HelpIsOnTheWay);
 {This field will be given a SGFieldCode of 2}
 SayGet(2,1,'Dept: ',Dept,_I,3,0);
 Set_AutoHelp_To(@HelpIsOnTheWay);
 ReadGets;
end;

 480 TOPAZ Technical Reference

__

Set_Bell_To procedure SAYGET4

Purpose: This allows you to set the tone of the beep that is heard when data is entered at the end of field
during a ReadGets, or when RingBell is called, to any pitch, duration, and repetition. The
default beep is one 550 Hertz tone lasting 100 milliseconds.

Declaration: Set_Bell_To(Pitch, Count, Duration : Word);

Parameter: Pitch is in Hertz (cycles per second), Duration is in milliseconds.

Notes: Set_Bell_To will not sound the bell when you invoke it. It merely sets the bell parameters
during a subsequent ReadGets (if you wish to ring the bell specified by Set_Bell_To see
RingBell). Setting the count to 0 has the effect of turning the bell off. This setting is effective
only with the SayGet routines and has no effect on the normal use of <Ctrl-G>. The default bell
setting is off.

Example: Set_Bell_To(1000, 2, 25);

{ will set the bell sound to make a double click}

 TOPAZ Technical Reference 481

__

Set_BrowseAttr_To BROWSE4

Purpose: Assigns specific colors to individual rows in the BROWSE display.

Declaration: Set_BrowseAttr_To (AttributeProc : Pointer);

Parameter: AttributeProc is a pointer to a FAR-user routine.

Notes: The AttributeProc procedure is called by BROWSE prior to painting a record on the screen.
The procedure should set colors via a call to SET_COLOR_TO.

Example: {$F+}
procedure PastDueInRed;
begin
 if customer._BALANCE<0 then SET_COLOR_TO(Red, Black,Black,

 Red);
end;
.
.
begin
 USE('customer', @customer, SizeOf(customer));
 SET_BrowseAttr_TO(@PastDueInRead);
 BROWSE('');
end.

 482 TOPAZ Technical Reference

__

Set_Browse_Calc_To procedure BROWSE4

Purpose: Permits the programmer to define a procedure that is executed during a BROWSE whenever
the end-user changes rows or edits a field.

Declaration: Set_Browse_Calc_To(UsersCalcProc : Pointer);

Parameter: UsersCalcProc points to a user-defined procedure.

Notes: The user's procedure can update fields that are calculated during a BROWSE session. In the
example shown below, the selected database represents a budget, where the _COST field is
really the product of the fields _UNITCOST and _QUANTITY. The user's procedure can
determined whether either of these fields has been modified, compute the new _COST, and
instruct BROWSE to re-display the record. The user's procedure is also called when the
BROWSE session begins. See BrowseEdit, BrowseField, UpdateBrowseRow.

Example: {$F+} {user-defined procedure to update the computed field _COST. Note
that it must be FAR.}

procedure ComputeCost;
begin
 if BrowseEdit then {proceed only if data has been modified}
 begin
 invoice._COST := invoice._QUANTITY * invoice._UNITCOST;
 REPLACE;
 {Inform BROWSE of new data}
 UpdateBrowseRow;
 end;
end;
{$F-}

{main program:}
USE('invoice', @Invoice, SizeOf(Invoice));
Set_Browse_Calc_To(@ComputeCost);
BROWSE('');

{In this example, the end-user will be placed in BROWSE and can scroll,
pan and edit fields as normal. However, whenever a field is edited,
control is transferred to the ComputeCost procedure. This procedure
first checks to see if a field has been edited using the TOPAZ
BrowseEdit function. If BrowseEdit returns True, a field was edited
(otherwise, the end-user only changed rows). If a field was edited, the
cost field is calculated as the product of a quantity and a unit cost.
The REPLACE statement updates the database, and the TOPAZ procedure
UpdateBrowseRow causes BROWSE to repaint the new information on the
screen. Note that the user's procedure must be declared FAR.}

 TOPAZ Technical Reference 483

__

Set_Browse_Color_To procedure BROWSE4

Purpose: Sets the color attributes of the deleted records, the field heading line, and the status line during
a call to BROWSE. Default colors are black on red for deleted records (with the current field
in yellow on red), and black on light gray for the field heading line and status line. All other
colors in BROWSE are determined by SET_COLOR_TO and Set_Highlight_To.

Declaration: Set_Browse_Color_To(DelFg, DelBg, CurDelFg,

CurDelBg, StatFg, StatBg : Byte);

Parameters: DelFg (Deleted Foreground) and DelBg (Deleted Background) refer to the colors of the
record. CurDelFg (Current Deleted Foreground) and CurDelBg (Current Deleted
Background) refer to the colors of the current field when on a deleted record. StatFg
(Statusline Foreground) and StatBg (Statusline Background) refer to the colors of the status
line. Color values expected are the normal Pascal color values. You may use the standard
Pascal color constants such as Red, Yellow, Blue, etc. The default colors in the order of
parameters are Black, Red, Yellow, Red, Black, LightGray.

Notes: See BROWSE.

Example: Set_Browse_Color_To(Black, White, Blue, Cyan, White, Black);
BROWSE(' ');

 484 TOPAZ Technical Reference

__

Set_BrowseCursor_On procedure BROWSE4

Purpose: Forces the cursor to remain on through a BROWSE session.

Declaration: Set_BrowseCursor_On;

Notes: By default, the cursor is off during BROWSE (except when editing a field).

__

Set_BrowseCursor_Off procedure BROWSE4

Purpose: Forces the cursor to the off condition during a BROWSE session, except when editing a field.

Declaration: Set_BrowseCursor_Off;

Notes: This is the default condition.

 TOPAZ Technical Reference 485

__

Set_BrowseWindow_To procedure BROWSE4

Purpose: Causes BROWSE to paint only between the rows and columns specified. Permits the
programmer to specify a box line style and heading text.

Declaration: Set_BrowseWindow_To(LtCol, TopRow, RtCol, BotRow,
LineStyle : Byte; Heading : String);

Parameter: The column and row coordinates specify the outer boundary of the BROWSE window
including the Menu, status, and prompt lines (if not inhibited). Coordinates may be specified
in either the dBASE or Pascal convention and order. LineStyle specifies whether a box is to
be drawn inside the BROWSE window. LineStyle can range from 0 to 5, with the following
pre-defined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Browse windows can be "exploded" onto the screen. Rather than being instantly presented,
an exploding window grows smoothly and quickly into its final shape. Browse windows can
be exploded by adding the predefined constant "Explode" (64 or $40) to LineStyle. The rate
of explosion can be adjusted by modifying the global byte ExplodeRate. The units of
ExplodeRate are in milliseconds per step, and defaults to 20 milliseconds per step. This gives
a smooth but quick explosion effect. Regardless of the size of the window, windows will
always take the same amount of time to expand. You can override the Explode constant with
the global variable ExplodeMode of enumerated type (Always, Never, Context). The default
value is Context, and enables the Explode constant to have an effect as specified in your
source code. If ExplodeMode is set to Always, all Browse windows (as well as Boxes, Pick,
Dialog, and Progress windows) explode regardless of whether Explode is added to LineStyle.

 486 TOPAZ Technical Reference

Heading specifies a string that will be displayed in the center (if possible) of the top line of
the rectangle.

Example: USE('customer',@customer,SizeOf(customer));
Set_BrowseWindow_To(10,10,70,20,SingleLine, 'Customer List');
BROWSE('');

{ or }

Set_BrowseWindow_To(7,5,73,20, SolidLine+Shadow+Explode, '');
BROWSE('');

 TOPAZ Technical Reference 487

__

Set_Button_Color_To procedure DIALOG

Purpose: Specifies the color of buttons in dialog boxes.

Declaration: Set_Button_Color_To(UnSelFg, UnSelBg,
SelFg, SelBg : Byte);

Parameters: UnSelFg and UnSelBg are the foreground and background colors of the unselected (un-
highlighted) buttons. SelFg and SelBg are the foreground and background colors of the
selected (highlighted) button. The default is Black, LightGray, White, Black.

Example: Set_Button_Color_To(Black, Green, Yellow, Magenta);

 488 TOPAZ Technical Reference

__

Set_BW_On procedure VIDPOP

Purpose: Causes color screens to be displayed in black and white.

Declaration: Set_BW_On;

Notes: When SAYWHAT?! screens designed for color systems, are displayed on monochrome or
composite monitors it is often best to turn off the color by calling this procedure once in your
program. Once called, all color information in a SAYWHAT?! screen will be converted to
black and white which will be properly visible on a composite monitor. All areas with
background colors other than black will become black on lightgray (attribute 112) and the rest
will have either dim or bright white on black (attributes 7 or 15).

__

Set_BW_Off procedure VIDPOP

Purpose: Causes color screens to be displayed in color.

Declaration: Set_BW_Off;

Notes: Resets display routines to default state where SAYWHAT?! images will be displayed with the
colors that were specified when the screen was originally created.

 TOPAZ Technical Reference 489

__

Set_Calc_Color_To procedure TZCALC

Purpose: Specifies the color scheme of the pop up calculator.

Declaration: Set_Calc_Color_To(Feature, Fg, Bg : Byte);

Parameters: Feature identifies which aspect of the calculator is being specified. The values of feature, and
their predefined constants, are:

NormalText = 1
Frame = 2
CalcDisplay = 3
TriggerKeys = 4

Fg and Bg are the foreground and background colors.

Notes: See Calculator, Set_CalcWindow_To.

Example: Set_Calc_Color_To(Frame, Yellow, Blue);
Set_Calc_Color_To(NormalText, LightCyan, Blue);
Set_Calc_Color_To(CalcDisplay, Black, LightGray);
Set_Calc_Color_To(TriggerKeys, White, Blue);

 490 TOPAZ Technical Reference

__

Set_CalcWindow_To procedure TZCALC

Purpose: Specifies the location, and border information for the pop-up calculator.

Declaration: Set_CalcWindow_To(Col, Row, LineStyle : Byte;
Heading : String);

Parameters: Column and Row coordinates specify the upper left hand corner of the calculator. Default
Pascal coordinates are 1,1. Coordinates may be given in either the dBASE or Pascal
convention and order. LineStyle specifies whether a box is to be drawn around the calculator,
and can range from 0 to 5 with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies a string that will be displayed in the center (if possible) of the top line of
the rectangle.

Example: Set_CalcWindow_To(5,7, SingleLine + Explode,'');

 TOPAZ Technical Reference 491

__

Set_CalendarAttr_To procedure TIMEDATE

Purpose: Permits individual days in the pop-up calendar to have colors that differ from the calendar
color scheme.

Declaration: Set_CalendarAttr_To(AttrFuncPtr : Pointer);

Parameter: AttrFuncPtr is a pointer to a programmer-defined function that returns a byte consisting of a
foreground and background color.

Notes: The TOPAZ pop-up calendar normally is painted in the current colors as specified by the most
recent SET_COLOR_TO statement. The colors of the highlighted date are set by the
Set_Calendar_To procedure. In some applications, however, certain days should be
displayed in alternate colors. For example, you may wish to display weekend and holidays in
a reduced contrast, or paydays in an intensified contrast. The Set_CalendarAttr_To
procedure allows you to point the calendar to your own color setting function, and is called
by the DisplayCalendar and SelectDate routines just before each date is displayed. Your
function should accept a Var parameter of type string, which will be the date to be displayed,
and should return a byte assembled from a high nibble representing the background color and
a low nibble representing the foreground nibble. Your function should return zero if no
special color is required for the date passed. If you wish to show a different highlight bar on
special days, your function should call the Set_Highlight_To procedure before returning.

Example: {make paydays prominent by showing them as White on Red. For this
example, paydays fall on the 15th and 30th of the month:}

uses timedate, crt;
function PayDays(Var Date : String) : Byte; Far;
begin
 if DAY(date) in [15,30] then
 PayDays := (Red shl 4) + White
 else PayDays := 0;
end;

begin
 Set_CalendarAttr_To(@PayDays);
 DisplayCalendar('');
end.

 492 TOPAZ Technical Reference

__

Set_Calendar_To procedure TIMEDATE

Purpose: Specifies the position of the upper left corner of the one-month interactive or static calendar
and the color of the highlighted day.

Declaration: Set_Calendar_To(Col, Row, Fg, Bg, LineStyle : Byte;
Heading : String);

Parameters: Col, Row are the column and row coordinates of the upper left corner of the calendar. Fg and

Bg are the foreground and background colors of the highlighted day. LineStyle is the style to
be used for the box around the calendar. Linestyle can range from 0 to 5, with the following
pre-defined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines). In addition,
the following modifiers can be added to LineStyle, resulting in further visual effects on how
the box is displayed (see the Box procedure on page 194 for a detailed explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center of the top line of the
calendar box.

Notes: The default settings are:

Col, Row = 48,2 and Fg, Bg = Black, LightGray

See DisplayCalendar, SelectDate.

Example: Set_Calendar_To(10,10, Blue, Cyan, SingleLine,'');

 TOPAZ Technical Reference 493

__

SET_CENTURY_ON procedure TIMEDATE

Purpose: Specifies that dates are displayed and entered with four digit years. Will affect all date math
routines and date fields in databases and in SayGet calls.

Declaration: SET_CENTURY_ON;

Units: Also available in the units SAYGET4 and DBF4.

Notes: Dates are commonly formatted as 'MM/DD/YY'. This representation assumes a certain

century. For example, the date '07/04/76' could mean July 4th 1776, 1876, or 1976. In such
cases, you can represent dates with the year explicitly written: '07/04/1776'.
SET_CENTURY_ON instructs TOPAZ units to keep track of the year as a 4-digit number.
The correct format for dates is then 'MM/DD/YYYY'. Expressing a date as 'MM/DD/YY'
with SET_CENTURY_ON will lead to unpredictable results. See SET_CENTURY_OFF.
See SET_DATE for a list of available date formats.

Example: SET_CENTURY_ON;
WriteLn(SystemDate);
{will display the current date including the century, e.g., 05/07/1990,
if date format is American}

 494 TOPAZ Technical Reference

__

SET_CENTURY_OFF procedure TIMEDATE

Purpose: Specifies that dates are displayed and entered with two digit years. TOPAZ uses the century
given by the system clock. Will affect all date math routines and fields in databases and
SayGet calls.

Declaration: SET_CENTURY_OFF;

Units: Also available in the units SAYGET4 and DBF4.

Notes: This is the default condition. The correct format for dates is 'MM/DD/YY'. See

SET_CENTURY_ON. See SET_DATE for a list of available date formats.

Example: SET_CENTURY_OFF;
WriteLn(SystemDate);
{will display the current date suppressing the century, e.g., 05/07/90,
if date format is American}

 TOPAZ Technical Reference 495

__

Set_Clock_Color_To procedure CLOCK

Purpose: Assigns the color attributes for the currently selected clock.

Declaration: Set_Clock_Color_To(Fg, Bg : Byte);

Parameters: Fg and Bg are the foreground and background colors values.

Notes: The default color for all clocks is Black on LightGray (reverse video). See Set_Clocks_On.

Example: SelectClock(2);

Set_Clock_Color_To(White, Blue);

 496 TOPAZ Technical Reference

__

Set_Clock_Format_To procedure CLOCK

 Purpose: Configures the currently selected clock to the specified format, enables or disables the clock,
and establishes whether the clock displays realtime or elapsed time.

Declaration: Set_Clock_Format_To(Command : String);

Parameter: Command is a string that can be set to any of the following clauses:

HH:MM:SS (the default display format)
HH:MM
MM:SS
MILITARY (24 hour time, default)
AMPM (in am/pm format)
TOD (displays Time-of-Day, the default)
ELAPSED TIME (displays elapsed time since format call)
'' (empty command=disables the display}

Notes: Clauses can be concatenated together.

Example: {display a time-of-day clock in the upper right corner, and an elapsed
time clock in the upper left corner}
SelectClock(1);
Set_Clock_Format_To('HH:MM AmPm TOD');
SelectClock(2);
Set_Clock_Format_To('MM:SS ELAPSED TIME');
Set_Clock_To(1,1);
Set_Clocks_On;

 TOPAZ Technical Reference 497

__

Set_Clocks_On procedure CLOCK

Purpose: Activates the display of all enabled clocks and timers.

Declaration: Set_Clocks_On;

Notes: All clocks and timers are interrupt driven. Once they are enabled via calls to
Set_Clock_Format_To, a single call to Set_Clocks_On will call all enabled clocks and timers
to be displayed and refreshed automatically. No further attention by the programmer is
required. The default is all clocks are off, and clock 1 is enabled.

See Set_Clocks_Off, Set_Clock_To, CurrentClock, Set_Clock_Format_To, SelectClock.

Example: {Start displaying the default clock}

Set_Clocks_On;

__

Set_Clocks_Off procedure CLOCK

Purpose: Deactivates the display of all clocks.

Declaration: Set_Clocks_Off;

Notes: See Set_Clocks_On.

 498 TOPAZ Technical Reference

__

Set_Clock_To procedure CLOCK

Purpose: Assigns the screen location for the currently selected clock.

Declaration: Set_Clock_To(Col, Row : Byte);

Parameters: Col, Row are the column and row coordinates for the left most character of the clock display.
If the coordinate system has been set to dBASE, the order of parameters is Row, Col.

Notes: The default location for all clocks is the first row, column 70. This location will be just to the
left of the default rotor location.

See SET_CLOCK_ON, SelectClock, CurrentClock.

Example: {position clock to bottom right of display}
Set_Clock_To(70,25);

 TOPAZ Technical Reference 499

__

Set_ColorMap_To procedure SAYGET4/VIDPOP

Purpose: Allows remapping of the colors specified in a SAYWHAT?! screen.

Declaration: Set_ColorMap_To(Map : Pointer);

Parameter: Map must be either a pointer to an array of 128 bytes or NIL.

Notes: An alternate to Set_BW_On, this procedure allows a way to re-map the colors of
SAYWHAT?! screens by providing your own color map. A color map must be an
Array[0..127] of Byte which contains values in the range of 0..127. The standard color map
contains values equal to the index of the array, in other words the zero'th element contains a
value of zero and the twenty-fifth element has a value of 25. These values represent the
attributes from black on black (0) to white on lightgray (127). To change the mapping of the
colors simply create an array as described above and change the values of the colors you wish
to re-map and then call Set_ColorMap_To with a pointer to your map. To disable the use of
your map call it with a NIL pointer. If you use the Set_BW_On syntax, that will have priority
over Set_ColorMap_To; To see what the standard color set looks like, refer to the attribute
chart in SAYWHAT?!. See also the file COLORMAP.EXE in the UTILS.ZIP file on the
TOPAZ distribution disk(s).

Set_ColorMap_To is available in both, SAYGET4 and VIDPOP. Regardless of which one
you use, the color map will affect all of TOPAZ rather than just the display of SAYWHAT?!
format screens.

Example: var ColorMap : Array[0..127] of Byte;
i : Byte;
begin
 { establish the standard mapping }
 for i := 0 to 127 do ColorMap[i] := i;
 { change white on red to white on green }
 ColorMap[79] := 47;
 { change white on green to white on red }
 ColorMap[47] := 79;
 Set_ColorMap_To(@ColorMap);
 PopSqz('Chart');
end.

 500 TOPAZ Technical Reference

__

SET_COLOR_TO procedure SAYGET4

Purpose: Sets the color attributes that are in effect during a SayGet or BROWSE call. Parameters allow
both foreground and background colors to be set for the "SAY" and "GET" data
independently. Default colors are light gray on black (7,0) for SAYs and black on light gray
(0,7) reverse video for GETs.

Declaration: SET_COLOR_TO(SayFgColor, SayBgColor,
GetFgColor, GetBgColor : Byte);

Parameter: Color values expected are the normal Pascal color values: 0..15 for foreground colors (Fg),
and 0..7 for background colors (Bg). You may use the standard color constants such as Red,
Yellow, Blue, etc. Also, you may add the standard Blink constant to a foreground color to cause
it to blink (see Example below).

Notes: Unlike dBASE, you may specify individual colors for different fields controlled by one
ReadGets simply by setting the color for each field before the SayGet statement for that field.

Setting the colors with this procedure will also set Pascal's TextColor and TextBackground
values but the converse is not true.

See SayGet, ReadGets, Set_Highlight_To, CurrentColors, PushColors, PopColors.

Example 1: SET_COLOR_TO(2,0,7,4);

Example 2: {using predefined constants for color names}
SET_COLOR_TO(Green, Black, LightGray, Red);

Example 3: {using the "blink" constant}
SET_COLOR_TO(Green + Blink, Black, LightGray, Red);

 TOPAZ Technical Reference 501

__

SET_CONFIRM_ON procedure SAYGET4

Purpose: CONFIRM is a term borrowed from dBASE. If it is set ON the end-user is not allowed to exit
a field by filling the field with data - he or she must press the carriage return to advance to the
next field. The cursor keys will still allow movement between fields. Default is CONFIRM
OFF.

Declaration: SET_CONFIRM_ON;

Notes: In addition to SET_CONFIRM_ON, the you may wish to set the global boolean
SpreadSheetMode. When True, a data field cannot be exited with the cursor keys (all other
keys work normally). See SET_CONFIRM_OFF, SayGet, ReadGets.

__

SET_CONFIRM_OFF procedure SAYGET4

Purpose: Turns CONFIRM off.

Declaration: SET_CONFIRM_OFF;

Notes: This is the default. See SET_CONFIRM_ON, SayGet, ReadGets.

 502 TOPAZ Technical Reference

__

SET_CONSOLE_ON procedure TZPRINT

Purpose: Directs any output written to the alternate device to appear on the screen.

Declaration: SET_CONSOLE_ON;

Notes: Used together with SET_CONSOLE_OFF and normally associated with writing output to an
alternate file. See also SET_ALTERNATE_ON/OFF, SET_ALTERNATE_TO,
SET_PRINT_ON/OFF.

__

SET_CONSOLE_OFF procedure TZPRINT

Purpose: Inhibits display of text on the monitor.

Declaration: SET_CONSOLE_OFF;

Notes: Used together with SET_CONSOLE_ON and normally associated with writing output to an
alternate file. This is the default setting. See SET_ALTERNATE_ON/OFF,
SET_ALTERNATE_TO, SET_PRINT_ON/OFF.

Example: SET_CONSOLE_ON;
WriteLn(Alternate,'This will go to the screen only');
SET_CONSOLE_OFF;

 TOPAZ Technical Reference 503

__

Set_Coordinates_To procedure SAYGET4

Purpose: Specifies whether the row and column coordinate system used by SayGet, At, PAINT, and
SCOREBOARD conform to the dBASE convention or Pascal convention. When set to
dBASE, the order of coordinates is row,column where row goes from 0..24 and column goes
from 0..79. When set to Pascal, the order of coordinates is column, row where column goes
from 1..80 and row goes from 1..25.

Declaration: Set_Coordinates_To(Convention : Byte);

Parameter: Convention can be either "dBASE" or "Pascal" which are pre-defined constants.

Notes: The default coordinate system is Pascal. See SayGet, ReadGets, At.

Example: Set_Coordinates_To(Pascal);
At(30,10,'This is the spot');
{column = 30, row = 10}

Set_Coordinates_To(dBASE);
At(9,29,'This is the same position as above');
{row = 9, column = 29}

 504 TOPAZ Technical Reference

__

Set_Country_To procedure SAYGET4

Purpose: Specifies language convention in SayGet for Boolean and real variables. Also affects date
format, and day and month names in the TIMEDATE unit.

Declaration: Set_Country_To(Country : Byte);

Parameter: Country is in the range of 0..8, with the following predefined constants:

USA = 0
Britain = 2
Italy = 3
France = 4
Germany = 5
Spain = 6
Quebec = 7
Russia = 8

Notes: TOPAZ checks the DOS environment upon program initialization for the presence of the
standard COUNTRY = nnn parameter (normally set in AUTOEXEC.BAT or CONFIG.SYS).
The DOS values of country code, nnn, are: USA = 001, Britain = 044, Italy = 039, France =
033, Germany = 049, Spain = 034, Quebec = 002, and Russia = 007. If a valid country code
is found, Set_Country_To is automatically invoked. The default country is USA. See
SET_DATE, SayGet, CMONTH, CDOW, SReal, and RealVal.

Example: Set_Country_To(Germany);

Will cause SayGet to display and accept 'J','R','N','F' for a Boolean variable, and real numbers
will use the comma for the decimal point symbol. SayGet will also accept and return dates in
dd.mm.yy format (or dd.mm.yyyy if CENTURY is set on), and return day names and month
names in German. If the DOS environment contains COUNTRY = 049, this is done
automatically without any coding necessary.

 TOPAZ Technical Reference 505

__

Set_Cursor_On procedure SAYGET4

Purpose: Turns the cursor on.

Declaration: Set_Cursor_On;

Notes: This is the default setting.

See Set_Cursor_Off, CursorVisible.

__

Set_Cursor_Off procedure SAYGET4

Purpose: Turns the cursor off.

Declaration: Set_Cursor_Off;

Notes: Be sure your application turns the cursor back on before terminating. ReadGets turns the
cursor on temporarily.

See Set_Cursor_On, CursorVisible.

 506 TOPAZ Technical Reference

__

Set_DataDefinition_To DBFEDIT, BROWSE4

Purpose: Permits the programmer to point to a custom procedure which defines the data fields,
validation routines, PICTURE clauses, etc., in a BROWSE, EDIT, or EditRecord session.

Declaration: Set_DataDefinition_To (DefinitionProc : Pointer);

Parameter: DefinitionProc is a pointer to a FAR user-defined procedure.

Notes: Normally, BROWSE, EDIT, and EditRecord display and edit data fields of the currently
selected database. The string parameters passed to BROWSE and EDIT, however, have no
mechanism to establish PICTURE clauses, special prompts, validation routines, and the like.
Use of Set_DataDefinition_To allows BROWSE, EDIT, and EditRecord to interrogate a
user-defined procedure which can fully determine not only how data is to be entered and
validated, but also whether fields from other open databases and even "virtual" fields are to
be included in the field list. The method for EDIT and EditRecord differs slightly from that
for BROWSE, as explained below.

With Set_DataDefinition_To, BROWSE can display fields from related database files, as
well as computed or "virtual" fields. Since virtual fields are computed by the program at run
time, they cannot be edited. Virtual fields must be strings limited to 80 characters or less, and
the user's procedure must always return the same string length for a virtual field. The user
routine uses a global record type and a global var pointer (predeclared in TZCOMMON).
These are:

var DataDefinition : ^DataDefinitionType;

type DataDefinitionType = record
Column : Byte;
Prompt : String[80];
Picture : String[80];
LoRange : String[14];
HiRange : String[14];
BlankField : Boolean;
NoEdit : Boolean; {continued on the next page}
ValidatePtr : Pointer;
AutoHelpPtr : Pointer;
FGPrompt : Byte;
BGPrompt : Byte;
DBFAlias : String[10];
FieldName : String[10];
Row : Byte;
Required : Boolean;
VirtualField : String[80];
end;

For each data column in BROWSE, the column number is passed to the user-defined
procedure, and the remainder of the vars above are initialized. The procedure then must either

 TOPAZ Technical Reference 507

specify the variables, for the column of interest, or exit to indicate to BROWSE that the last
column has been specified. See Examples 1 and 2 for use of this technique.

With EDIT and EditRecord, the method is slightly different: the DataDefinition variable is
initialized, and the global variable SGFieldCode is set to the field number on entry to the user-
defined procedure. This procedure must then fill in column, row, etc., as desired. Row and
column both being zero is a signal to EDIT or EditRecord that no more fields are to be
specified. See Example 3.

Example 1: {$F+} {browse fields from a related database}
procedure Linkage;
begin
 SelectAlias('client');
 FIND(invoice._CLIENTCODE);
end;

procedure ViewOfInvoices;
begin
 with DataDefinition^ DO {a Topaz global in unit TzCommon}
 begin
 case Column of
 1: FieldName := 'INVOICENO';
 2: FieldName := 'INV_DATE';
 3: begin
 DBFAlias := 'client';
 FieldName := 'NAME';
 Prompt := 'Client';
 end;
 4: FieldName := 'AMOUNTDUE';
 end;
 end;
end;
begin {procedure of interest}
 SelectAlias('invoice');
 SET_RELATION_TO(@Linkage); {client is now related to invoices}
 SET_DataDefinition_TO(@ViewOfInvoices);
 BROWSE('');
end;

 508 TOPAZ Technical Reference

Example 2: {BROWSE to show price and quantity fields, but also display the product
of these two numbers as a virtual field}

procedure ShowCosts;
begin
 WITH DataDefinition^ DO {a Topaz global in unit TzCommon}
 begin
 case Column of
 1: FieldName := 'INVOICENO';
 2: FieldName := 'PRICE';
 3: FieldName := 'QUANTITY';
 4: VirtualField := SReal(invoice._PRICE

* invoice._QUANTITY, 10,2);
 end;
 end;
end;

begin {procedure of interest}
 SelectAlias('invoice');
 SET_DataDefinition_TO(@ShowCosts);
 BROWSE('');
end;

Example 3: {$F+}
procedure MyDef;
begin
 with DataDefinition^ do
 case SGFieldCode of
 1: begin

 Prompt := 'Customer Name: ';
 Picture := '@!';
 end;

 2: ValidatePtr := @CheckStateName;
 3: BlankField := True;
 end;
end;

begin
 Set_DataDefinition_To(@MyDef);
 EDIT('');
end;

 TOPAZ Technical Reference 509

__

SET_DATE procedure TIMEDATE

Purpose: Establishes the format for entering, displaying, representing and computing dates.

Declaration: SET_DATE(DateFormat : Byte);

Parameters: DateFormat ranges from 0 to 8 according to the following convention:

0 = American : mm/dd/yy or mm/dd/yyyy
1 = ANSI : yy.mm.dd or yyyy.mm.dd
2 = British : dd/mm/yy or dd/mm/yyyy
3 = Italian : dd-mm-yy or dd-mm-yyyy
4 = French : dd.mm.yy or dd.mm.yyyy
5 = German : dd.mm.yy or dd.mm.yyyy
6 = Spanish : dd.mm.yy or dd.mm.yyyy
7 = FrenchCanadian : dd.mm.yy or dd.mm.yyyy
8 = Russian : dd.mm.yy or dd.mm.yyyy

The pre-defined constants USA, Britain, Italy, France, Germany, Spain, Quebec, and Russia
can also be used.

Notes: SET_DATE is also available in the SAYGET4 unit. SET_DATE affects the date math
routines in the TIMEDATE unit and SayGet/ReadGets in the SAYGET4.

Example: SET_DATE(ANSI);
x := '';
SayGet(10,10,'Enter an ANSI date: ',_x,_D,8,0);
ReadGets;

 510 TOPAZ Technical Reference

__

SET_DELETED_ON procedure DBF4

Purpose: Prevents records with the "delete" field set from being accessed by SKIP, GoTop, GoBottom,
CopyTo, and BROWSE.

Declaration: SET_DELETED_ON;

Notes: The GO procedure will position the database to the specified record number, whether the
record is deleted or not. See SET_DELETED_OFF.

__

SET_DELETED_OFF procedure DBF4

Purpose: Allows records with the "delete" field set to be accessed by SKIP, GO, GoTop, GoBottom,
CopyTo, and BROWSE.

Declaration: SET_DELETED_OFF;

Notes: This is the default setting. See SET_DELETED_ON.

 TOPAZ Technical Reference 511

__

SET_DELIMITERS_TO procedure SAYGET4

Purpose: Sets the left and right characters that bracket an input field during a ReadGets. A standard
choice of input field delimiters is the colon symbol. The default are null characters.

Declaration: SET_DELIMITERS_TO(LtChar, RtChar : String1);

Parameter: LtChar and RtChar are the left and right delimiters. They need not be the same character.
Graphics characters from the IBM Extended Character Set are permitted.

Notes: Delimiters can be disabled by setting LtChar and RtChar to null characters. See SayGet,
ReadGets.

Example 1: SET_DELIMITERS_TO('[',']'); {set to brackets}
SET_DELIMITERS_TO('',''); {no delimiters}
SET_DELIMITERS_TO(#254,#254}; {set to squares}

Example 2: { how to make data entry clearer on monochrome systems, and also how to
distinguish color from monochrome automatically but allowing for a
command-line paramater to force monochrome settings (especially useful
for laptops)}

if IsColor and (Upper(ParamStr(1)) <> '/M') then
 begin
 Set_Color_To(White, Blue, Black, Cyan);
 Set_Highlight_To(Black, Brown);
 Set_Browse_Color_To(Black, Red, White, Red, Yellow, Black);
 end
else
 begin {for monochrome, use delimiters and make get color

bright (not reverse) video, except current get }
 Set_Delimiters_To('[',']');
 Set_Color_To(LightGray, Black, White, Black);
 Set_Highlight_To(Black, LightGray);
 Set_Browse_Color_To(white, lightgray, white, black,

lightgray, black);
 end;

 512 TOPAZ Technical Reference

__

Set_Dialog_Color_To procedure DIALOG

Purpose: Sets the color attributes used by the DialogBox function.

Declaration: Set_Dialog_Color_To(BoxFg, BoxBg, MessageFg,
MessageBg : Byte);

Parameters: BoxFg and BoxBg are the foreground and background colors of the box. MessageFg and

MessageBg are the foreground and background colors of the text in the Dialog box.

Notes: The default colors are:

BoxFg and MessageFg = LightGray
BoxBg and MessageBg = Black

See DialogBox, Set_DialogWindow_To.

Example: Set_Dialog_Color_To(LightGray, Magenta, White, Magenta);

 TOPAZ Technical Reference 513

__

Set_DialogWindow_To procedure DIALOG

Purpose: Sets the position, style, and heading of the window area and box to be drawn when the
DialogBox function is called.

Declaration: Set_DialogWindow_To(Row, LineStyle : Byte;
Heading : String);

Parameters: Row is the starting row of the box. By default, the DialogBox will be centered vertically unless
a starting Row is specified by a call to Set_DialogWindow_To. LineStyle specifies the
symbol set to be used in drawing the box, and is in the range of 0 to 5. The values of
LineStyle and the predefined constants are:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Notes: The default value of Row is 255 (Pascal coordinates), of LineStyle is SingleLine, and of

Heading is '' (empty string). See DialogBox, Set_Dialog_Color_To.

Example: Set_DialogWindow_To(10, DoubleLine + Shadow, 'Note This:');

 514 TOPAZ Technical Reference

__

Set_DosRetry_To procedure DBF4/NET

Purpose: Allows modification of the default DOS retry count and delay values for file and record
locking.

Declaration: Set_DosRetry_To(Count, Delay : Integer);

Notes: The default DOS values are: Count = 3, Delay = 1. Delay is in 1/18 second increments
although it is supposedly CPU speed dependent. This function is available only with DOS 3.1
and later but no checking is done to confirm the DOS version. Requires that SHARE.EXE be
loaded or emulated as with Novell Netware.

Example: Set_DosRetry_To(20,20);

 TOPAZ Technical Reference 515

__

Set_EditDirection_To procedure BROWSE4

Purpose: Causes the cursor to move in a specified direction after editing a cell in BROWSE.

Declaration: Set_EditDirection_To(Direction : Char);

Parameter: Direction can be set to 'R' to automatically move the cursor to the cell on the right, 'D' to move
down, and 'S' for the cursor to remain stationary (remain in the cell). The default direction is
'S'.

Notes: Unlike a screen of SayGets, where the cursor moves through fields in a fixed order, BROWSE
permits the programmer to specify which neighboring cell to advance to after a cell has been
edited.

Example: Set_EditDirection_To('R');
BROWSE('');

 516 TOPAZ Technical Reference

__

Set_EditFKey procedure EDIT

Purpose: Assigns a user-written procedure to a specified function key that is active during a TOPAZ
edit session (EditText/EditMemo).

Declaration: Set_EditFKey(K : Char; HotKeyPtr : Pointer);

Parameters: K can be any of the predefined constants F1..F10 (normal), SF1..SF10 (<Shift>), CF1..CF10
(<Ctrl>), and AF1..AF10 (<Alt>). HotKeyPtr points to the user-defined procedure that is called
by the editor. The procedure must be a FAR procedure.

Notes: This routine allows the programmer to implement function "hot keys" during the editing of
either text or a memo. See EditText, EditMemo.

Example: {While editing a memo, pressing F10 will display other fields of the
current record}
{$F+}
procedure ShowFields;
begin
 PushWindow(1,1,80,25);
 for i := 1 to FieldCount do

WriteLn(Field(i):10,' ',SField(i));
 WAIT('');
 PopWindow;
end;
.
.
begin
 Set_EditFKey(F10, @ShowFields);
 EditMemo(customer._NOTES,'');
 .
 .
end;

 TOPAZ Technical Reference 517

__

Set_Editor_Color_To procedure EDIT

Purpose: Sets the color attributes of text, marked blocks, status line and box parts during a text editor
session.

Declaration: Set_Editor_Color_To(Feature, Fg, Bg : Byte);

Parameters: Feature refers to the specific part of the editor color scheme that is being set. The features
are declared as the following constants:

NormalText = 1
BlockText = 2
Frame = 3
Status = 4
DialogFrame = 5
DialogText = 6
PickText = 7
PickBar = 8
HelpFrame = 9
HelpText = 10

The vars Fg and Bg refer to the foreground and background colors respectively.

Notes: The default color system is that of Borland's Turbo Pascal editor.

Example 1: {set text editing to white on blue:}
Set_Editor_Color_To(NormalText, White, Blue);

Example 2: {set block colors to Black on Light Gray}
Set_Editor_Color_To(BlockText, Black, LightGray);

 518 TOPAZ Technical Reference

__

Set_EditorWindow_To procedure EDIT

Purpose: Causes EditText to paint only between the rows and columns specified. Permits the
programmer to specify a box line style and heading text.

Declaration: Set_EditorWindow_To(LtCol, TopRow, RtCol, BotRow,
LineStyle : Byte; Heading : String);

Parameters: The column and row coordinates specify the outer boundary of the EditText window including
the status line (if not inhibited). Coordinates may be specified in either the dBASE or Pascal
convention and order. LineStyle specifies whether a box is to be drawn inside the EditText
window. LineStyle can range from 0 to 5, with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Example: Set_EditorWindow_To(5,5,65,20,SolidLine,'Press F1 for Help');

 TOPAZ Technical Reference 519

__

Set_EditWindow_To procedure DBFEDIT

Purpose: Causes EDIT and EditRecord to paint only between the rows and columns specified. Permits
the programmer to specify a box line style and heading text.

Declaration: Set_EditWindow_To(Col1, Row1, Col2, Row2,
LineStyle : Byte; Heading : String);

Parameters: Col1, Row1 are the column and row coordinates of the upper left corner of the edit window,
and Col2, Row2 are the coordinates of the lower right corner. If the coordinate system has
been set to dBASE, the coordinate order is row, column. LineStyle specifies the symbol set
to be used in drawing the box, and is in the range 0 to 5. The values of LineStyle and the
predefined constants are:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines). In addition,
the following modifiers can be added to LineStyle, resulting in further visual effects on how
the box is displayed (see the Box procedure on page 194 for a detailed explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Notes: See EDIT, EditRecord.The default location and size of the Edit window is:
Row1, Col1 = 1, 1 and Row2, Col2 = 25,80 (full screen).

Example: Set_EditWindow_To(10, 5, 70, 20, DoubleLine, 'Current Record');

 520 TOPAZ Technical Reference

__

SET_EPOCH_TO procedure TZCOMMON

Purpose: Specifies the starting year of a 100 year period that permits TOPAZ to properly convert and
store 2 digit years as 4 digit years.

Declaration: SET_EPOCH_TO(BaseYear : Word);

Parameter: BaseYear is the starting year of the 100-year "epoch".

Notes: By default, TOPAZ assumes Century to be set Off (See SET_CENTURY_ON/OFF). In this
state, or whenever SET_CENTURY_OFF has been called, dates are input (via SayGet and
ReadGets calls), displayed, and reported with 2-digit years rather than 4-digit years. Data is
always stored in DBF files, however, with 4-digits. Where do the extra 2 digits that represent
the century come from in this case? By default, the century is assumed to be the same century
as the System Date. However, as the year 2000 approaches, it will be necessary to refer to
years such as 2001 and not store them as 1901. Similarly, when the year 2000 passes, it will
be necessary to work with dates such as 1999 and not store them as 2099. One obvious
solution is to simply call SET_CENTURY_ON in your application, and force the user to key
in 4-digit years (and display all dates with 4-digit years). A more elegant solution is to call
SET_EPOCH_TO, specifying a "base year" that defines the first year of a 100 year period
in which all 2-digit dates will be correctly interpreted. For example, a call to
SET_EPOCH_TO(1950) results in 2-digit years from 50 to 99 interpreted as 1950 to 1999,
while years 00-49 to be interpreted as 2000-2049. Thus, this simple addition to your code will
permit your application to work seamlessly across the century boundary. For example, putting
SET_EPOCH_TO(1990) in the initialization part of your application will permit that
application to function correctly until the year 2089. After that, your great grandchildren can
deal with the problem! The following examples show the effects of SET_EPOCH_TO:

 TOPAZ Technical Reference 521

Example 1: SET_EPOCH_TO(1900); { the default until the year 2000 }
WriteLn(CTOD('05/27/1904')); { returns 19040527 }
WriteLn(CTOD('05/27/67')); { returns 19670527 }
WriteLn(CTOD('05/27/04')); { returns 19040527 }

Example 2: SET_EPOCH_TO(1960); {years specified from 00 to 59 will actually refer
to 2000 to 2059, and years from 60 to 99 will
actually refer to 1960 to 1999. See the results
below}

WriteLn(CTOD('05/27/1904')); { returns 19040527 }
WriteLn(CTOD('05/27/67')); { returns 19670527 }
WriteLn(CTOD('05/27/04')); { returns 20040527 }

 522 TOPAZ Technical Reference

__

Set_ErrorHandler_To procedure TZCOMMON

Purpose: Establishes a user-error-handling routine to be called in the event of a fatal processing error.

Declaration: Set_ErrorHandler_To (Handler : Pointer);

Parameters: Handler is a user routine declared as a FAR proc.

Notes: Allows you to have your own procedure called instead of the standard TOPAZ fatal error
handler. When AutoHalt is ON, the TOPAZ routine will report the nature of the error and halt
the program. If you specify another routine via this new procedure, your routine will be called
instead. If it does not halt the program then TOPAZ will behave as if AutoHalt is OFF. Your
routine must be a procedure that requires no parameters and is compiled as a FAR routine.

Your error handler can do anything you want although it is recommended that it not do
anything that can generate another error. See the file OnError.Inc for an example of an error
reporting procedure.

The TOPAZ error handler does not wait for a keystroke, but instead immediately returns to
DOS. If your application was run from a batch file or other program that immediately clears
or refreshes the screen, you will not have an opportunity to read the message. Rather than
build your own error handler as described above, you may wish instead to set the global
boolean WaitOnError to True. TOPAZ error messages will then wait for a keystroke before
returning to DOS.

Example: var LineNumber : String[4];
{$F+}
procedure MyErrorReport;
begin
 ClrScr;
 WriteLn('Error #',DbfError,' occured on line: ',LineNumber);
 WriteLn(Message);
 {Message function in the TZCOMMON unit returns the most recent
 ASCII message string generated by TOPAZ}.
 Halt;
end;
{$F-}
{ continuedd on the next page...}

begin
 Set_ErrorHandler_To(@MyErrorReport);
 LineNumber := '1234';
 USE('MyFile',Nil,0);
 { restore error handler to standard routine }
 Set_ErrorHandler_To(NIL);
end.

 TOPAZ Technical Reference 523

__

SET_ESCAPE_ON procedure SAYGET4

Purpose: This sets a global flag which allows the end-user to exit a ReadGets by pressing the <Esc> key.
This is similar to pressing <Ctrl-Q> except that the value of EditResult will be 2. It is up to the
programmer to decide what to do when the end-user presses <Esc>. Data existing in the
variable specified in the SayGet statement being read at the time of pressing <Esc> is still
replaced in memory if it was changed before hitting <Esc>. The only difference is that your
program may optionally detect the pressing of the <Esc> key. SET_ESCAPE_ON also affects
a PACK.

Declaration: SET_ESCAPE_ON;

Notes: Unlike dBASE, SET_ESCAPE_ON only applies when ReadGets is active, i.e., pressing
<Esc> will not halt the program. See SayGet, ReadGets, SET_ESCAPE_OFF.

__

SET_ESCAPE_OFF procedure SAYGET4

Purpose: When ESCAPE is set off, the escape key is not enabled while a ReadGets is active and the
only way to abandon an edit is to press <Ctrl-Q>.

Declaration: SET_ESCAPE_OFF;

Notes: This is the default setting. See SayGet, ReadGets, SET_ESCAPE_ON.

 524 TOPAZ Technical Reference

__

SET_EXACT_ON procedure INDEX4

Purpose: Forces the FIND procedure to find an exact match in the index file based on the full length of
the key field or search key string before returning Found = True.

Declaration: SET_EXACT_ON;

Notes: See SET_EXACT_OFF

Example: SET_INDEX_TO(@FirstNameKey, 'custind', 1);
SET_EXACT_ON;
FIND('JANE');
{This will find the entry JANE, but not JANET}

__

SET_EXACT_OFF procedure INDEX4

Purpose: Instructs the FIND procedure to find a match in the index file based on the length of the search
string only. That is, a match is found when all characters in the search string are matched, even
though the key contains additional characters.

Declaration: SET_EXACT_OFF;

Notes: This is the default condition. See SET_EXACT_ON.

Example: SET_INDEX_TO(@FirstNameKey, 'custind', 1);
SET_EXACT_OFF;
FIND('JANE');
{This will find the entry JANET, or JANE DOE if the index does not
contain the entry JANE}

 TOPAZ Technical Reference 525

__

SET_EXCLUSIVE_ON procedure DBF4/NET

Purpose: Causes all subsequently opened database files to be opened EXCLUSIVE. When open
EXCLUSIVE, a database cannot be opened again by any other work-station. Any attempt to
open a database EXCLUSIVE when it is already open, in any mode, by another work-station
will result in an error.

Declaration: SET_EXCLUSIVE_ON;

Notes: Files to be packed, indexed or zapped must be opened EXCLUSIVE. Opening a file
EXCLUSIVE is achieved by setting the Pascal Filemode variable to $12 (Deny All) when
compiled with the Multi-User units and $02 (Non-Shareable Read/Write) when compiled with
the Single-User units. A file may also opened for exclusive use by including the
EXCLUSIVE clause in the USE procedure.

See SET_EXCLUSIVE_OFF, and USE.

Example 1: SET_EXCLUSIVE_ON;
USE('names', @names, SizeOf(names));
{NAMES.DBF will be opened with a filemode of Deny All. If the file is
already open by another user, an error will result. See next example.}

Example 2: {Trap error so end-user can be informed of why file cannot be opened. }
SET_EXCLUSIVE_ON;
Set_AutoHalt_Off;
USE('names', @names, SizeOf(names));
Set_AutoHalt_On;
if DBFError = 5 then { access denied }

 begin
 c := DialogBox('NAMES file cannot be opened '+

 'at this time.','');
 exit;
 end;

 526 TOPAZ Technical Reference

__

SET_EXCLUSIVE_OFF procedure DBF4/NET

Purpose: Causes all subsequent DBF database files to be opened sharable.

Declaration: SET_EXCLUSIVE_OFF;

Notes: This the default condition. Files are opened with the Pascal FileMode variable set to $42
(Sharable read/write). See SET_EXCLUSIVE_ON, USE.

Example: SET_EXCLUSIVE_ON;
USE('names', @names, SizeOf(names));
PACK;
SET_EXCLUSIVE_OFF;

 TOPAZ Technical Reference 527

__

Set_FieldCode_To procedure SAYGET4

Purpose: Permits the default values of SGFieldCode to be overridden. For use with user-defined
procedures in Set_Validate_To, Set_FKey, and Set_AutoHelp_To.

Declaration: Set_FieldCode_To(Code : Byte);

Parameter: The global SGFieldCode is set to code.

Notes: Normally the SayGet procedure will assign each GET a sequential number starting with 1.
When control is passed to a user-defined procedure (pointed to by the Set_Validate_To,
Set_FKey, or Set_AutoHelp_To procedures), the global byte SGFieldCode can be used to
reference this number and thus identify which data entry field is currently being edited.
Set_FieldCode_To allows you to override this default assignment and is useful if you wish
to group fields belonging to several ReadGets together. See SGDEMO.PAS in the
SAMPLES.ZIP file on the TOPAZ distribution disk(s) for a complete example of the use of
this procedure.

 528 TOPAZ Technical Reference

__

SET_FILTER_TO procedure DBF4

Purpose: Sets a user-defined filter in the current work area. The filtering function will determine which
database records are processed by the SKIP, GoTop, and GoBottom commands. Records that
do not pass the condition tested by the filtering function are ignored. SET_FILTER_TO will
not alter the position of the file when it is called.

Declaration: SET_FILTER_TO(FilterFuncPtr : Pointer);

Parameter: FilterFuncPtr is a pointer to a user-defined filtering function.

Notes: The filtering function must be declared FAR and must return a boolean. The function can use

any field, portions of fields, or combination of fields in the user record to determine whether
the record is to be filtered. A separate filter can be set for each database opened, i.e. in each
work area. Passing the NIL pointer cancels the filter in the current area. It is important to call
one of the database positioning functions (such as GoTop), after a SET_FILTER_TO in
order to position the database to a filtered record. Calling GO(n), however, will not guarantee
that the file will be positioned on a record that matches the filter condition. A call to SKIP(n)
will cause the file to move n filtered records. SET_FILTER_TO affects CopyTo (only
records that match the filter condition will be copied). The filter can be disabled by issuing
the command SET_FILTER_TO (NIL) in the selected work area.

Example: {$F+}
{Filter function limits access to records with zip codes > 90000}
function WestCoast : Boolean;
begin
 WestCoast := Customer._Zip > '90000';
end;
{$F-}

{in main body of program or procedure:}
USE('customer', @customer, SizeOf(customer));
SET_FILTER_TO(@WestCoast);
GoTop; {goes to the first record satisfying the filter}
Set_Filter_To(NIL);

 TOPAZ Technical Reference 529

__

Set_FKey procedure SAYGET4

Purpose: Assigns a user-written procedure to a specified function key. Whenever ReadGets is active
and the defined function key is pressed, the user-written procedure will be executed. When
exited, control will be returned to ReadGets where data entry is resumed.

Declaration: Set_FKey(Key_number : Char; Proc : Pointer);

Parameter: Key_number can be any of the predefined constants F1..F10 (normal), SF1..SF10 (shift),
CF1..CF10 (ctrl), and AF1..AF10 (Alt). The user-written procedure proc must be a FAR
procedure.

Notes: The programmer is permitted to call SayGet from the user-written procedure (i.e., recursion
is permitted). Set_FKey may be called more than once with different key numbers, so that
several function keys can be active at the same time. Function keys can be cancelled by
setting the pointer to the user's procedure to NIL. See ReadGets, SayGet. Refer to the example
below, and in the demo program SGDEMO.PAS in the SAMPLES.ZIP file on the TOPAZ
distribution disk(s).

Example: {$F+}
DisplayHelpMessage;
begin
 At(23,1,'Customer IDs must start with a letter.');
end;
{$F-}

begin
 Set_FKey(F1, @DisplayHelpMessage);
 {DisplayHelpMessage will gain control when <F1> is pressed
 during a ReadGets}
 ...

 530 TOPAZ Technical Reference

__

Set_Flush_On procedure DBF4

Purpose: Sets the condition that forces all following database disk write operations to flush the contents
of the DOS file buffer to disk. In effect, database disk writes generated by DBF4 routines will
no longer be buffered.

Declaration: Set_Flush_On;

Notes: Normal disk write operations are buffered and therefore leave open the possibility of losing

data that was not flushed to disk prior to a system crash or power failure. Set_Flush_On
provides the programmer with the option of always writing to the physical disk during
database operations (such as APPEND or REPLACE). The trade off for data security is loss
of data processing speed. This is especially true during the PACK routine.

See Set_Flush_Off, CommitDBF, FlushDBF, PACK.

__

Set_Flush_Off procedure DBF4

Purpose: Allows normal DOS buffering during disk write operations to database files managed by the
routines in the DBF4 unit.

Declaration: Set_Flush_Off;

Notes: This is the default setting.

See Set_Flush_On, CommitDBF, FlushDBF, PACK.

 TOPAZ Technical Reference 531

__

Set_Group_To procedure REPORT4

Purpose: Permits the programmer to specify a user-defined routine that labels groups during execution
of ReportForm.

Declaration: Set_Group_To(GroupStringFunc : Pointer);

Parameter: GroupStringFunc is a pointer to a user-defined string function.

Notes: Normally, ReportForm generates its own Group heading while printing reports where groups
have been specified with REPGEN.EXE. The user-defined function specified by
Set_Group_To allows the programmer to substitute a custom Group heading. The function
must be declared FAR.

If a GroupStringFunc has been specified, it will be called each time the database has been
moved to the next report record, before the record is reported. If the current record represents
a change to a new "group", then the GroupStringFunc should return a string to be used as a
"group heading." If the current record is not a new group record, the GroupStringFunc should
return an empty string. Group totals are still handled automatically by ReportForm.

Example: program SimpleReporter;
uses DBF4, REPORT4;
{$I MYDATA.INC}

var LastGroup : string;
function MyGroupHeading : string;
begin
 if LastGroup = MyData._Group then MyGroupHeading := ''
 else
 begin
 {the semi-colons in the output string cause blank lines}
 MyGroupHeading := ';;--- Current group : '+ MyData._Group;
 LastGroup := MyData._Group;
 end;
end;

begin
 USE('MYDATA.DBF', @MyData, SizeOf(MyData));
 Set_Group_To (@MyGroupHeading);
 LastGroup := '';
 ReportForm ('MYDATA.RPT TO PRINT');
end.

 532 TOPAZ Technical Reference

__

Set_Help_Color_To procedure TZHELP

Purpose: Specifies the color scheme for the help system.

Declaration: Set_Help_Color_To(Feature, Fg, Bg : Byte);

Parameters: Feature identifies which aspect of the help system is being specified. The values of feature,
and their predefined constants, are:

NormalText = 1;
Frame = 2;
NoHelpExistsMessage = 3;
TopicPickBar = 4;

Fg and Bg are the foreground and background colors.

Notes: Each call to Set_Help_Color_To will set the color for the Feature specified. To set all colors
Set_Help_Color_To must be called four times with different values for each Feature.

Example: Set_Help_Color_To(Frame, Yellow, Blue);

 TOPAZ Technical Reference 533

__

Set_HelpWindow_To procedure TZHELP

Purpose: Specifies the size, location, border line style, and heading for help windows when the help
system is activated.

Declaration: Set_HelpWindow_To(Col1, Row1, Col2, Row2 : Byte;
LineStyle : Byte; Heading : String);

Parameters: The column and row coordinates Col1, Row1, Col2, and Row2, specify the outer boundary
of the help window. Coordinates may be given in either the dBASE or Pascal convention and
order. LineStyle specifies whether a box is to be drawn inside the window, and can range from
0 to 5 with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Example: Set_HelpWindow_To(5,5,65,20,SolidLine+Shadow,'');

 534 TOPAZ Technical Reference

__

SET_HELP_ON procedure TZHELP

Purpose: Activates the help system.

Declaration: SET_HELP_ON;

Notes: The program must have called Set_Help_To prior to a call to SET_HELP_ON.

Example: Set_Help_To('myapp', F1, #0, AF1);
Set_HelpWindow_To(5,5,65,20,SolidLine+Shadow,'');
Set_Help_Color_To(Frame, Yellow, Blue);
SET_HELP_ON;

__

SET_HELP_OFF procedure TZHELP

Purpose: De-activates the help system.

Declaration: SET_HELP_OFF;

Notes: Calling SET_HELP_OFF does not close the help file or release any memory that TOPAZ
has allocated for the help system. The help system is still in memory, and call to
SET_HELP_ON will re-activate it. To close down the help system, use a call to
Set_Help_To('', #0, #0, #0).

 TOPAZ Technical Reference 535

__

Set_Help_To procedure TZHELP

Purpose: Specifies the help database name and help hot keys.

Declaration: Set_Help_To(HelpFile : PathStr; ContextKey : Char;
AuthoringKey : Char; TopicKey : Char);

Parameters: HelpFile is the name of the help database filename. It is not necessary to specify an extension.
If no extension is specified, the default extension of .HLP will be added. If the help file does
not exist, it will be created. ContextKey specifies which key to act as the hot key to pop up
help. Extended keys can be specified by either the predefined constants F1..F10, AF1..AF10,
CF1..CF10, and SF1..SF10, or by adding 128 to the second character of the 2-character set
(e.g., F1 = char(ord(';')+128). AuthoringKey specifies which key to act as a hot key that
permits editing help messages at run time. If set to empty, authoring will not be permitted.
TopicKey specifies which key to act as hot key that pops up the topic pick list. If set to empty,
accessing topics is inhibited.

Notes: Calling Set_Help_To does not activate the help system. To close the help files and release
all memory allocated for the help system, call Set_Help_To with an empty file name. See
Set_Help_Color_To, SET_HELP_ON/OFF.

Example: Set_Help_To('myapp', F1, #0, AF1);

 536 TOPAZ Technical Reference

__

Set_Highlight_To procedure SAYGET4

Purpose: This procedure will cause whatever field contains the cursor to be highlighted with the
specified color during a ReadGETS session. The color of the field will revert to its prior color
when the cursor leaves the field.

Declaration: Set_Highlight_To(FgColor, BgColor : Byte);

Parameter: FgColor and BgColor are the standard Pascal foreground and background colors, 1..15 and

1..7 respectively.

Notes: To set highlighting off, as is the default, set both the foreground and background colors to
zero. See SayGets, ReadGets.

Example: SET_COLOR_TO(Green, Blue, LightGray, Red);
SayGet(10,10,'Last Name: ', LastName,_S,20,0);
SayGet(10,11,'First Name: ', FirstName, _S,10,0);
Set_Highlight_To(Black, Red);
ReadGets;

Sets the SAY color to green on blue, the GET color to white on red, and the highlight color
to black on red. At run time, the prompts

Last Name: and First Name:

will be in green on blue, and the data fields will be in white on red, except for the currently
active data field (as defined by the position of the cursor) which will be in black on red.

 TOPAZ Technical Reference 537

__

Set_Hunt_On procedure PICK

Purpose: Enables the PickList and PickFile procedures to search for a list item or filename beginning
with the character typed by the end-user when PickList or PickFile are active. This is the
default setting.

Declaration: Set_Hunt_On;

Notes: Although "hunting" can be a very convenient method of jumping to a desired portion of a list
(especially for long lists), there are situations where hunting will not be useful (for instance,
picking from a list of dates). Hunting remains disabled after Set_Hunt_Off until a
Set_Hunt_On command is issued. Set_Hunt_On works with PickList, TagItems, PickFile
and TagFile.

See Set_Hunt_Off.

Example: Set_Hunt_Off;
i := PickList(@InvoiceDates, 1, 50, 1);
Set_Hunt_On;

__

Set_Hunt_Off procedure PICK

Purpose: Disables the ability of the PickList and PickFile procedures to search for a list item or
filename beginning with the character typed by the end-user when PickList or PickFile are
active.

Declaration: Set_Hunt_Off;

Notes: See Set_Hunt_On.

 538 TOPAZ Technical Reference

__

Set_IndexFlush_On INDEX4

Purpose: Flush all changes made to the Index file as they are made.

Declaration: Set_IndexFlush_On;

Notes: If you Set_IndexFlush_On, this will cause TOPAZ to flush any changes made to the index
file to the disk. The idea is to make both DBF4 and INDEX4 more fault tolerant to power
outages, re-boots, etc. Of course, just like SET_FLUSH_ON in DBF4, this will degrade the
performance a bit. The Multi-User version of TOPAZ automatically sets IndexFlush on, and
attempting to set flush off will have no effect.

See Set_IndexFlush_Off.

__

Set_IndexFlush_Off INDEX4

Purpose: Flush changes made to the Index file only when the file is closed, or the file buffer is full.

Declaration: Set_IndexFlush_Off;

Notes: Normally, index file flushing is off. The Multi-User version of TOPAZ automatically sets
IndexFlush on, and attempting to set flush off will have no effect.

See Set_IndexFlush_On.

 TOPAZ Technical Reference 539

__

SET_INDEX_TO procedure INDEX4

Purpose: Opens the specified index file and applies the index to the currently active database. Also used
to close the index file.

Declaration: SET_INDEX_TO(KeyFunction : Pointer;
IndexFileName : String; Order: Integer);

Parameter: KeyFunction is a pointer to a user-defined function that returns a key string (normally based
on the fields of the user database record), and should be the same function as the Key Maker
function used with INDEX_ON. IndexFileName is the name of the index file that will be
opened. The default file extension is .IND. Order is a number from 1 to 16. If order is 1, the
index is the primary index. If IndexFileName is the null string (''), then the index file
associated with Order will be closed.

Notes: Setting an index requires that the database be opened with the USE command and currently
SELECTed. The index file is originally created with the INDEX_ON command. The index is
automatically updated to reflect the addition of new records, and records whose key fields have
been edited. SET_INDEX_TO automatically positions the database to the first index entry.
By default, SET_INDEX_TO dynamically allocates a cache of up to 25k bytes, depending
on the key length. In situations where memory is at a premium, the programmer can specify
that no cache be allocated by using the NOCACHE clause after the index file name. The
clauses DESCENDING and SOUNDEX are descibed in the section "Indexing Databases" in
the Tutorial part of this manual, and in INDEX_ON. If you don't want to cache any index files
you can set the global boolean variable NeverCacheIndexes to True.

The global variable DBFError can be examined to determine the success of the operation. See
the rules for Key Functions listed under INDEX_ON.

While indexing, a counter is displayed and updated on the screen. The display of this counter
can be disabled with a call to Set_Odometer_Off.

 540 TOPAZ Technical Reference

See INDEX_ON, FIND, SET_ORDER_TO, MakeIndex, CloseIndexes.

Examples: {$F+}
function CustomerKey : String;
begin
 With Customer Do
 CustomerKey := UPPER(_Name)+_Territory;
end;
{$F-}

begin {main program}
 USE('customer',@customer,SizeOf(customer));
 SET_INDEX_TO(@CustomerKey, 'CustName', 1);
 {Open the customer database (CUSTOMER.DBF) and set the index file
to the previously created CUSTOMER.IND, as the primary index}

 {to open the index without a cache:}
 SET_INDEX_TO(@CustomerKey, 'CustName NOCACHE', 1);
 .
 .
end.

 TOPAZ Technical Reference 541

__

Set_MaxLines_To procedure EDIT

Purpose: Sets the maximum number of lines of text permitted in a TOPAZ editor session.

Declaration: Set_MaxLines_To(MaxLineValue : Integer);

Parameter: MaxLineValue is the maximum line number.

Notes: The default maximum line number is 1024. The largest permissible value of this parameter
is 16,386. This setting affects both the text and memo editors. Each line requires a minimum
of 4 bytes of memory.

Example: Set_MaxLines_To(4000);

 542 TOPAZ Technical Reference

__

Set_Memo_Color_To procedure EDIT

Purpose: Sets the color attributes of text, marked blocks, status line and box parts during a memo edit
session.

Declaration: Set_Memo_Color_To(Feature, Fg, Bg : Byte);

Parameters: Feature refers to the specific part of the editor color scheme that is being set. The features
are declared as the following constants:

NormalText = 1
BlockText = 2
Frame = 3
Status = 4
DialogFrame = 5
DialogText = 6
PickText = 7
PickBar = 8
HelpFrame = 9
HelpText = 10

The variables Fg and Bg refer to the foreground and background colors respectively.

Notes: The default color system is that of Borland's Sidekick notepad editor.

Example 1: {set text editing to white on blue:}
Set_Memo_Color_To(NormalText, White, Blue);

Example 2: {set block colors to Black on Light Gray}
Set_Memo_Color_To(BlockText, Black, LightGray);

 TOPAZ Technical Reference 543

__

Set_MemoDisplayWindow_To procedure MEMO

Purpose: Causes DisplayMemo to paint only between the rows and columns specified. Permits the
programmer to specify a box line style and heading text.

Declaration: Set_MemoDisplayWindow_To(LtCol, TopRow, RtCol,
BotRow, LineStyle : Byte; Heading : String);

Parameters: The column and row coordinates specify the outer boundary of the DisplayMemo window
including the status line (if not inhibited). Coordinates may be specified in either the dBASE
or Pascal convention and order. LineStyle specifies whether a box is to be drawn inside the
DisplayMemo window. LineStyle can range from 0 to 5, with the following predefined
constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines). In addition,
the following modifiers can be added to LineStyle, resulting in further visual effects on how
the box is displayed (see the Box procedure on page 194 for a detailed explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Notes: This procedure permits the programmer to specify coordinates for DisplayMemo that are
independent of the coordinates used by EditMemo. See Set_MemoWindow_To.

Example: Set_MemoDisplayWindow_To(5,5,65,20,SolidLine,'NOTES');

 544 TOPAZ Technical Reference

__

Set_MemoWidth_To procedure MEMO

Purpose: Establishes which column the memo starts in and which column the memo wraps in for calls
to PrintMemo and SendMemo.

Declaration: Set_MemoWidth_To(LeftMargin, RightMargin : Byte);

Parameters: LeftMargin is the column number of the memo starts in, and RightMargin is the greatest
column the memo will end in.

Notes: Set_MemoWidth_To affects only the SendMemo and PrintMemo routines.

Example: USE('customer', @customer, SizeOf(customer));
Set_MemoWidth_To(10,60);
PrintMemo(customer._NOTES);

 TOPAZ Technical Reference 545

__

Set_MemoWindow_To procedure EDIT

Purpose: Causes EditMemo to paint only between the rows and columns specified. Permits the
programmer to specify a box line style and heading text.

Declaration: Set_MemoWindow_To(LtCol, TopRow, RtCol, BotRow,
LineStyle: Byte; Heading : String);

Parameters: The column and row coordinates specify the outer boundary of the EditMemo window
including the status line (if not inhibited). Coordinates may be specified in either the dBASE
or Pascal convention and order. LineStyle] specifies whether a box is to be drawn inside the
EditMemo window. LineStyle can range from 0 to 5, with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Notes: See Set_MemoDisplayWindow_To.

Example: Set_MemoWindow_To(5,5,65,20,SolidLine,'NOTES');

 546 TOPAZ Technical Reference

__

Set_Menu_Color_To procedure DIALOG

Purpose: Sets the values of the colors to be used by the Menu procedure.

Declaration: Set_Menu_Color_To (BoxFgColor, BoxBgColor,
BarFgColor, BarBgColor : Byte);

Parameters: Color values expected are the normal Pascal color values: 0..15 for foreground colors, and
0..7 for background colors. You may use the standard color constants such as Red, Yellow,
Blue, etc.

Notes: If you do not call Set_Menu_Color_To, the current colors specified with Set_Color_To will
be used by Menu. See Menu, Set_Color_To.

Example: Set_Menu_Color_To (Yellow, Blue, White, Black);

 TOPAZ Technical Reference 547

__

Set_MenuFkeys_To procedure VIDPOP

Purpose: This procedure allows you to detect and act upon a function key pressed while a moving-bar
menu is active. When one of the function keys you select is pressed, a procedure defined by
you will be called and it can determine which menu item is currently highlighted and which
key was pressed. When your procedure returns, the menu will continue where it left off.
Set_MenuFkeys_To is provided primarily to make more complex context- sensitive help
available from moving-bar menus but you may use it for any purpose you like.

Declaration: Set_MenuFkeys_To(Keys : String; Proc : Pointer);

Parameters: Keys must be a string which contains one or more of the extended key codes assigned to the
function keys. Proc must be a pointer to your FAR routine which will get control when one
of the specified function keys is pressed.

Notes: Your procedure may call another moving-bar-menu, but be aware that this would be a
recursive call which can be hazardous to the health of the stack! The global boolean
ExitMenu permits such procedures to force termination of the menu (equivalent to the end-
user pressing the <Esc> key) and setting MenuChoice to 0, MenuChar to ' ', and MenuString
to ''.

Example 1: const F1 = ';'; F2 = '<';
{$F+}
procedure ContextHelp;
{$F-}
begin
 case MenuKey of { which function key was pressed? }
 F1 : begin
 case MenuChoice of { highlighted menu item}
 1 : { display help for first menu item } ;
 2 : { display help for second menu item } ;
 end;
 end;

 F2 : begin
 { things to do when F2 is pressed }
 end;
 end;
end;

begin
 Set_MenuFkeys_To(F1+F2, @ContextHelp);
 PopScreen(@yourmenu);
 { or CreateMenu(10,10,20,20,yellow,black); }
 case MenuChar of
 'A' : { end-user chose menu item starting with "A" } ;
 'B' : { end-user chose menu item starting with "B" } ;
 end;
end.

 548 TOPAZ Technical Reference

{ When the end-user presses <F1> or <F2> the procedure ContextHelp will
be called and it can determine which menu item is currently highlighted
by looking at the usual global menu variables: MenuChoice, MenuString,
or MenuChar. The global variable MenuKey : Char will always contain the
char value of the key that was last pressed in any menu. If a function
key was pressed, MenuKey will contain the extended key code. By
comparing the contents of MenuKey with the keys specified in the string
parameter "keys" you can determine which function key was pressed to
activate your procedure.

If your routine modifies the screen it is up to you to save and restore
the screen contents before returning. The use of the Set_MenuFkeys_To
procedure has no effect on the Set_MenuHelp_To command thus, if you use
another menu in your procedure you must preserve the prior menu settings
with a call to PushMenu and then call PopMenu before exiting your
procedure.

NOTE: As with Set_MenuHelp_To, you must either declare your procedure
as FAR {$F+} or compile your whole program with the far directive. }

Example 2: {$F+}
procedure MenuFKeyHandler; {pop up a note pad when F1 is pressed}
var c : char;
begin
 EditText('notepad.txt');
 c := DialogBox('Return to menu? ','yn');
 ExitMenu := c = 'N';
end;
.
.
.
Set_MenuFKeys_To (F1, @MenuFkeyHandler);
Menu('Add Edit Delete Quit');
if ExitMenu then
begin
 { the FkeyHandler said to exit the menu }
end
else
 Case MenuChar of ...
 ...
 end;

 TOPAZ Technical Reference 549

__

Set_MenuHelp_To procedure VIDPOP

Purpose: Primarily intended to allow Lotus style menu help to be displayed for each menu item although
it can be used for a variety of other purposes.

Declaration: Set_MenuHelp_To(HelpProc : Pointer);

Notes: Assigns your procedure to be called whenever the end-user moves the light bar on a moving-
bar menu. Your procedure may display anything you like such as Lotus style descriptive
messages or a SAYWHAT?! screen. Use any of the global vars: MenuChoice, MenuString,
or MenuChar to determine which menu item is currently highlighted.

Example: Your help procedure may have any name you like and would typically have the following
structure:

{$F+}
procedure LotusStyleHelp; { must be declared FAR }
{$F-}
begin
 case MenuChoice of
 1 : At(1,1,'Add a new record to the database');
 2 : At(1,1,'Edit the current record ');
 3 : At(1,1,'Quit program ');
 end;
end;

procedure MainMenu;
begin
 Set_MenuHelp_To(@LotusStyleHelp);
 repeat
 PopScreen(@yourmenu);
 case MenuChoice Of
 1 : AddRecord;
 2 : EditRecord;
 end;
 until MenuString = 'QUIT';
end;

 550 TOPAZ Technical Reference

__

Set_MenuTimeOut_To procedure VIDPOP

Purpose: Controls how long a menu waits for a user's keystroke.

Declaration: Set_MenuTimeout_To (NumberSecs : Byte);

Parameter: NumberSecs is the number of seconds to wait for the end-user.

Notes: Allows you to have menus that will time out after some number of seconds. They are exited
by simulating an escape key pressed. This routine has no effect if MenuEscapeEnable is
False. The number of seconds is approximate and is less accurate as the value of NumberSecs
gets larger.

Example: Set_MenuTimeOut_To(10);
{menu will time out in 10 seconds +- 1 second}

 TOPAZ Technical Reference 551

__

Set_MenuWindow_To procedure DIALOG

Purpose: This allows the programmer to set the location, line style and default heading of the menus
activated by the Menu procedure.

Declaration: Set_MenuWindow_To(Column : Byte; Row : Byte;
LineStyle : Byte; Heading : String);

Parameters: Column and Row are the coordinates of the upper left corner of the menu box. LineStyle is the
Line Style (including Shadow and Explode options) to be used for the box drawn around the
menu choices. Heading is a string to appear in the top line of the menu box.

Notes: A value of 255 in either coordinate causes the Menu routine to center the menu along that
axis. (255, 255) will cause the Menu routine to center the new menu both vertically and
horizontally. For example, a setting of (255, 5) would create a menu centered from left to
right, with the top of the menu box in row 5 of the screen. Row and Column are in the current
coordinate system (Pascal or dBase).

If you specify either a Column or a Row value that would result in some portion of the menu
being off the screen, the coordinates will be adjusted so that the entire menu is visible on the
screen. So, specifying upper-left corner coordinates of (80, 25) would result in a fully visible
menu in the lower right corner of the screen.

Available line styles and predefined constants are:

NoLine = 0
SingleLine = 1 { default }
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

 552 TOPAZ Technical Reference

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

See Menu.

Example 1: {specify menu centered horizontally and vertically}
Set_MenuWindow_To(255, 255, DoubleLine + Shadow,' Choose One ');
Menu('Add Edit Delete Quit');

Example 2: {specify menu in upper left hand corner}
Set_MenuWindow_To(1,1, SingleLine + Explode,' Select Option ');
Menu('Save Restore Quit');

 TOPAZ Technical Reference 553

__

Set_MousePointer_To procedure TZCOMMON

Purpose: Permits changing the style, type, and color of the Mouse cursor.

Declaration: Set_MousePointer_To(PointerStyle : PointerStyleType;
CharNo : Byte; AttrStyle : AttrStyleType;

AttrFG, AttrBG : Byte);

Parameters: PointerStyle can be either Block or Character. CharNo is the ASCII code number for the
character specified and is ignored if a Block-type Mouse cursor is specified. AttrStyle may
be either Transparent, Reversed, or Fixed. AttrFG and AttrBG are ignored except when
specifying an AttrStyle of Fixed.

Notes: The default condition is the equivalent of calling
Set_MousePointer_To(Block,0,Reversed,0,0). Transparent means that the Mouse cursor
takes on whatever attribute it is on thus it is most appropriately used when you also specify
a character as the Mouse cursor.

Example: {set the Mouse cursor to be a Yellow on Blue diamond character:}
Set_MousePointer_To(Character,4,Fixed,Yellow,Blue);

{ set the Mouse cursor to be a fixed color (white on red) block allowing
the character underneath the cursor to show through:}

Set_MousePointer_To(Block,0,Fixed,White,Red);

 554 TOPAZ Technical Reference

__

Set_MouseWindow_To procedure TZCOMMON

Purpose: Sets a boundary rectangle for the Mouse cursor.

Declaration: Set_MouseWindow_To(x1,y1,x2,y2 : Byte);

Parameters: x1,y1 refer to the upper left corner of the boundary rectangle and x2,y2 refer to the lower right
corner of the boundary.

Notes: The Mouse cursor will not be allowed to move outside of the specified boundary. The default
boundary rectangle is: 1,1, 80,MaxAvailRows. TOPAZ does not use this routine internally
so be sure that the boundary is sufficient to allow the proper behavior of the Mouse by any
TOPAZ routines that are active.

Example: { Limit Mouse movement to the area of a BROWSE window: }
Set_MouseWindow_To(10,10,70,20);
Set_BrowseWindow_To(10,10,70,20,SingleLine,'');
BROWSE('');
{ reset default Mouse window: }
SetMouseWindow(1,1,80,MaxAvailRows);

 TOPAZ Technical Reference 555

__

SetMouseXY procedure TZCOMMON

Purpose: Positions the Mouse cursor.

Declaration: SetMouseXY(x,y : Byte);

Parameters: x and y specify the column and row respectively.

Notes: Used when it is desirable to ensure the Mouse cursor is on or near a required choice so that
the user does not have to move the Mouse. Note that if the global boolean constant,
AutoMousePlacement = True, the Mouse will automatically be placed in an appropriate place
when a TOPAZ activity such as a menu or SayGet/ReadGets session begins.

Example: { move the Mouse cursor to the center of the screen: }
SetMouseXY(40,MaxAvailRows Div 2);

 556 TOPAZ Technical Reference

__

Set_NetError_To procedure DBF4/NET

Purpose: Causes a user-defined function to be called when locking errors occur.

Declaration: Set_NetError_To(P : Pointer);

Notes: This permits your routine to be called when a record or file lock fails and it may determine if
the lock attempt should be repeated. Your routine must be a simple boolean function which
requires no parameters and must be compiled as a FAR routine. Your routine will be called
when a lock attempt is unsuccessful after the number of automatic retries specified with
Set_Retry_To(Count, Delay) have been exhausted. If your function returns TRUE the entire
lock sequence is repeated with all of its automatic retries; otherwise the lock attempt is
abandoned and FLOCK, ALOCK, or RLOCK will return FALSE. The default automatic
retries and delay between tries is zero.

Example: {$F+}
function RetryLock : Boolean;
begin
 RingBell;
 RetryLock := DialogBox('Cannot lock record.;'

+ 'Keep trying?','YN') = 'Y';
end;

begin
 Set_NetError_To(@RetryLock);

 if RLOCK then
 begin
 REPLACE;
 UNLOCK;
 end;

 Set_NetError_To(NIL);
end;

 TOPAZ Technical Reference 557

__

SET_ODOMETER_ON procedure INDEX4

Purpose: Causes a display of record counter during indexing.

Declaration: SET_ODOMETER_ON;

__

SET_ODOMETER_OFF procedure INDEX4

Purpose: Inhibits display of the record counter during the INDEX_ON operations.

Declaration: SET_ODOMETER_OFF;

Notes: This is the default setting.

 558 TOPAZ Technical Reference

__

SET_ORDER_TO procedure INDEX4

Purpose: Determines which of the indexes opened with the database in the current work area is the
primary index (the one that controls the order in which records are processed and the one used
by the FIND command).

Declaration: SET_ORDER_TO(N : Byte);

Parameter: N must be in the range of 1 to 16.

Notes: SET_ORDER_TO is a faster way to switch indexes than SET_INDEX_TO because no files
are actually opened or closed.

Example: USE('customer', @customer, SizeOf(customer));
SET_INDEX_TO(@CustNameKey,'CustName',1);
SET_INDEX_TO(@CustCodeKey,'CustCode,2);
{data will be processed in the order of customer name, but both index
files will be updated}
.
.
.
SET_ORDER_TO(2);
{data will now be processed in order of customer code, since we have
just instructed TOPAZ to make index 2 the primary index}
.
.
.
SET_ORDER_TO(1);
{data will now be processed in order of customer name, as before}

 TOPAZ Technical Reference 559

__

Set_PacketSize_To procedure SPOOLER

Purpose: Sets the number of characters to be sent to the printer each 55 milliseconds. In effect, this
determines the percentage of time the spooler has control of the CPU.

Declaration: Set_PacketSize_To(Size : Byte);

Parameter: Size defaults to 32 characters. It is recommended that the spooler should be busy less than
50% of this time in order for the foreground application to not be appreciably slowed.
Recommended packet sizes are:

Baud Rate Maximum Recommended
Packet Size Packet Size

 110 1 1
 300 1 1
 600 3 1
 1200 6 3
 2400 13 6
 4800 26 13
 9600 53 26
Parallel see notes

Notes: For parallel printers, packet size is determined by the printing speed. The maximum packet
size is given by 0.055 times the printer speed in characters/sec. The recommended packet size
is no larger than 50% of the maximum packet size. Setting the packet size will cancel the
spooler's current printing task.

Example: Set_PacketSize_To(16);
{prints 16 char/55 ms, or 290 chars/sec}

 560 TOPAZ Technical Reference

__

Set_PageHeading_To procedure REPORT4

Purpose: Permits the programmer to specify a user-defined routine that returns a page-specific heading
during execution of ReportForm.

Declaration: Set_PageHeading_To(HeadingStringFunc : Pointer);

Parameter: HeadingStringFunc is a pointer to a user-defined string function.

Notes: ReportForm generates a heading at the top of each page. This heading is defined by the
programmer with REPGEN.EXE, and can be modified for the entire report with the
HEADING clause of ReportForm. Certain applications may require the ability to print a
heading that is page-specific. For example, consider a grouped report where new groups
cause a form feed. If the group is longer than a page, the group is continued on the next page,
but without a group heading. The user-defined function can be used to implement a page-
heading that is specific to the group or the record about to be printed.

Example: {$F+}
function GroupHeading : String;
begin
case customer._REGION[1] of

'E' : GroupHeading := 'Eastern Region';
'S' : GroupHeading := 'Southern Region';
'N' : GroupHeading := 'Northern Region';
'W' : GroupHeading := 'Western Region';
end;

end;

.

.

.
USE('customer', @customer, SizeOf(customer));
SET_INDEX_TO(@RegionKey, 'byregion', 1);
.
.
Set_PageHeading_To(@GroupHeading);
ReportForm('byregion');

 TOPAZ Technical Reference 561

__

Set_PageSize_To procedure TZPRINT

Purpose: Establishes the height and width of the printed page image for use with AtPrint.

Declaration: Set_PageSize_To(Width, Height : Byte);

Parameters: Width is in columns and Height is in rows. The default values are width = 80 and height = 66.

Notes: If the default values of width and height are satisfactory, it is not necessary to call
Set_PageSize_To. If Set_PageSize_To is called and there is already an image of data (due to
prior calls to AtPrint), the page image will be cleared without printing and the data stored will
be lost.

See also AtPrint, PrintPage, ClearPage, EJECT.

Example: { create a page buffer with room for 120 columns by 66 lines (rows) of
text }
Set_PageSize_To(120,66);

 562 TOPAZ Technical Reference

__

Set_Password_To procedure TZCOMMON

Purpose: Permits the programer to lock the keyboard during an application.

Declaration: Set_Password_To(Password : String;
 CaseSensitive : Boolean);

Parameters: Password is a string which the end-user can type to unlock the keyboard. If CaseSensitive is
True, the password must be matched in case, otherwise the password is case insensitive.

Notes: Once the application has called Set_Password_To with a non-empty password, Keypressed
will return False and ReadKey will not return to the calling program regardless of activity at
the keyboard. If the password is typed, however, the keyboard is "unlocked", and both
Keypressed and ReadKey revert to their normal operation. By calling Set_Password_To with
an empty password, the application can also "unlock" the keyboard.

Although keystrokes are locked out, the end-user can still press <Ctrl><Alt> to reboot the
computer.

Example 1: {program to lock the keyboard at DOS until the valid password is typed}
uses tzcommon;

begin
Set_Password_To('sesame',False);
repeat until KeyPressed;
end.

Example 2: {application locks keyboard during a particular process}
Set_Password_To('special',True);
ProcessData;
Set_Password_To('',False); {unlock the keyboard and continue}

 TOPAZ Technical Reference 563

__

Set_PeekCache_To procedure DBF4

Purpose: Sets or changes the size of the Peek-cache buffer.

Declaration: Set_PeekCache_To(CacheSize : Word)

Parameter: CacheSize is the size of the desired Peek-cache buffer in bytes.

Notes: The TOPAZ Peek routine optionally uses a look-ahead cache for increased performance. The
potential enhancement in speed can be significant (see benchmark below). To enable the
cache call Set_PeekCache_To with a non zero parameter value. TOPAZ will allocate as
much memory as possible not exceeding CacheSize or half of available memory, whichever
is smaller. All subsequent calls to Peek will utilize the cache, refreshing the cache as
necessary. Calls to Peek after selecting another database will cause the cache to be flushed
and filled with records from the current database. You may call Peek multiple times for the
same record with no I/O penalty. Calling Set_PeekCache_To(0) will recover any memory
occupied by a Peek cache and disable the use of the cache.

Benchmarked with a relatively narrow database containing 9252 records, the time to Peek
field 1 for all records was measured as follows:

No cache Cached

Network Drive 131 ticks 109 ticks
Local Drive 102 ticks 38 ticks

Most networks provide decent caching already (assuming the server is not too busy) and the
Peek cache can improve performance only slightly. On a local drive with no other caching we
get much better results; with caching, Peek is three times faster than without although it really
depends on a lot of hardware and software factors.

The default size of the cache is zero bytes. The first call to Peek after setting the cache size
will allocate memory. CacheSize is specified in bytes and may not be larger than $FFF0 bytes.

The interaction of a disk cache (such as SmartDrive) and the Peek cache is complex. Consult
the benchmark results below as an example of the benefit of a Peek cache in various
configurations. For these data, the following environment applies:

Number of data base records: 9200 records
Data base filesize = 416470 bytes
Drive: Local (26ms)
CPU 386DX 20 MHz
DiskCache = SMARTDRV.SYS (extended memory)
PeekCache size: 8 kbytes

 564 TOPAZ Technical Reference

+))))))))))))0))))))0)))))))0))))))0)))))))0))))))))))))))),
* Disk Cache * zero * 1024k * zero * 1024k * bytes *
/))))))))))))3))))))3)))))))3))))))3)))))))3)))))))))))))))1
* Peek Cache * zero * zero * 8k * 8k * bytes *
/))))))))))))3))))))3)))))))3))))))3)))))))3)))))))))))))))1
* First run * 87 * 94 * 45 * 53 * timer-ticks* *
/))))))))))))3))))))3)))))))3))))))3)))))))3)))))))))))))))1
* Second run * 97 * 71 * 43 * 26 * timer-ticks *
.))))))))))))2))))))2)))))))2))))))2)))))))2)))))))))))))))-

* 18.2 timer-ticks per second

 TOPAZ Technical Reference 565

__

Set_PickCalc_To procedure PICK

Purpose: Specifies a procedure to be called during a PickList, PickFile, TagItems, or TagFiles session
when a hot key is pressed.

Declaration: Set_PickCalc_To(HotKeyProc : Pointer);

Parameter: HotKeyProc is a pointer to a programmer-defined procedure that is called when the hot key
is pressed during a Pick or Tag session.

Notes: Certain applications require greater control when PickList, PickFile, TagItems, or TagFiles
is running. For example, the end-user may wish to add a new item to those shown in the
PickList. Hot keys are specified by setting the global set of char WatchKeys (for convenience,
F1..F10, SF1..SF10, AF1..AF10, and CF1..CF10 are predefined constants in the SAYGET4
unit). On entry to the programmer-defined procedure, the global vars CurrentPickFileName
and CurrentPickFileItem are set to the currently highlighted filename or item (either in Pick
or Tag routines). See example below.

Example: {uses the <F1> key to view the first line of text files during PickFile}

{$F+}
procedure ViewFirstLine;
var f : text;
 Line : String;

begin
 Assign(f, CurrentPickFileName);
 reset(f);
 ReadLn(f, Line);
 DialogBox('First line of '+ CurrentPickFileName + ' is:;'

+ Line, ScrollPressAnyKey);
 Close(f);
end;

var fn : String;
begin
 WatchKeys := [F1];
 Set_PickCalc_To(@ViewFirstLine);
 fn := PickFile('*.TXT');
 Set_PickCalc_To(NIL);
 WatchKeys := [];
 .
 .

 566 TOPAZ Technical Reference

__

Set_Pick_Color_To procedure PICK

Purpose: Sets the color attributes used by PickFile and PickList functions.

Declaration: Set_Pick_Color_To(Fg, Bg, BarFg, BarBg : Byte);

Parameters: Fg and Bg are the foreground and background colors used in displaying the pick box and list
of data items. BarFg and BarBg are the foreground and background colors of the highlighted
moving bar.

Notes: The default values of the parameters are LightGray, Black, Black, LightGray. Pick colors
will stay in effect until a subsequent call to Set_Pick_Color_To. This procedure will not
affect the current colors set by SET_COLOR_TO, nor will SET_COLOR_TO effect the Pick
Colors. See PickList, PickFile, Set_PickWindow_To.

Example: Set_Pick_Color_To(Cyan, Blue, Yellow, Black);
.
.
.
Filename := PickFile('*.DBF');

Filenames will be in Cyan on Blue, and the moving bar will be in Yellow on Black.

 TOPAZ Technical Reference 567

__

Set_PickWindow_To procedure PICK

Purpose: Sets the size, style, and heading of the window area and box to be drawn when the PickFile
or PickList functions are called.

Declaration: Set_PickWindow_To(LtCol, UpRow, RtCol, LowRow,
LineStyle : Byte; Heading : String);

Parameters: LtCol..LowRow (left column, upper row, right column, lower row) are the coordinates of the
window area, including the box. LineStyle specifies the symbol set to be used in drawing the
box, and is in the range of 0 to 5. The values of LineStyle and the predefined constants are:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines). In addition,
the following modifiers can be added to LineStyle, resulting in further visual effects on how
the box is displayed (see the Box procedure on page 194 for a detailed explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading is a string that will be centered on the top line of the box (if one is drawn). If the
string is longer than the width of the box, the string will be trimmed to fit.

Notes: Default settings are LeftColumn=10, UpperRow=10, RightColumn=30, LowerRow=20,
LineStyle=SingleLine, Heading=''. See PickFile, PickList, Set_Pick_Color_To.

Examples: Set_PickWindow_To(10,5,25,22,SingleLine,'Select');

Set_PickWindow_To(5,5,20,20,SolidLine + Shadow,'');

 568 TOPAZ Technical Reference

__

Set_Position_To procedure VIDPOP

Purpose: Allows screens and saved windows to be displayed at positions other than their original
positions.

Declaration: Set_Position_To(Col, Row : Byte);

Parameters: Col refers to the new upper left corner column position. Row refers to the new upper left
corner row position. Coordinates values MUST be specified in the Pascal coordinate system.

Notes: It is possible to control the display position of any screen at runtime by calling this procedure
before calling any of the screen display routines or saved window display routines. The
column and row parameters should correspond to the position that you wish the upper left
corner of the screen to appear on the monitor. The coordinates you specify will be used
regardless of the position of a sub screen when originally saved with SAYWHAT?!
Set_Position_To works with SAYWHAT?! sub screens and full screens, and windows
restored by PopWindow or DisplayWindow. Set_Position_To is only effective for a single
display and must be called before calling the appropriate display routine. Any moving-bar
menu area will be adjusted accordingly so that the menu appears correctly on the screen.
Please note that these column and row values will not be affected by the Set_Coordinates_To
procedure in the TOPAZ unit SAYGET4 unit. See also: PopScreen, PopSqz, PopWindow,
DisplayWindow.

Example 1: { save a portion of the screen and then redisplay it at a different
position five columns to the right and five rows higher on the screen }
PushWindow(10,10,20,20);
Set_Position_To(15,5);
PopWindow;

Example 2: { display a SAYWHAT?! sub screen at random positions all over the screen
}
repeat
 Set_Position_To(Random(79),Random(24));
 PopScreen(@subscreen);
until True;
{NOTE: This procedure may be used to place screen images on 43/50 line
monitors.}

 TOPAZ Technical Reference 569

__

Set_Printer_Port_To procedure TZPRINT

Purpose: Permits the programmer to specify a printer port, when sending output to the alternate print
device.

Declaration: Set_Printer_Port_To(Port : Byte);

Parameter: Port can be in the range of 1 to 3, corresponding to LPT1 to LPT3. A value outside this range
sets the printer port to LPT1. If the port specified does not exist, it will also set the printer
port to LPT1. The default printer port is LPT1.

Notes: See SET_PRINT_ON.

Example: Set_Printer_Port_To(2);
SET_PRINT_ON;
WriteLn(alternate,'This will go to LPT2');

 570 TOPAZ Technical Reference

__

SET_PRINTER_TO procedure SPOOLER

Purpose: Configures the spooler to list device LPT1..LPT4, or COM1..COM4, and installs the spooler
interrupts. The default port is LPT1, and the spooler is automatically installed when the unit
declared in the "uses" section of the application program. The normal printer interrupt is re-
installed automatically when the program terminates.

Declaration: SET_PRINTER_TO(Mode : String);

Parameter: Mode is the parameter string equivalent to the parameters following the DOS MODE
command. Thus, the following are all valid mode parameters:

LPT1 or LPT1:
LPT2 or LPT2:
LPT3 or LPT3:
COM1:1200,N,8,1 (Baud Rate = 1200, no parity,

 8 bit word, 1 stop bit)

Notes: Passing the null string uninstalls the spooler. The global error byte, SpoolerError, will be set
to a non-zero result if the mode parameter is invalid or if no physical listing device is found
at the specified port. The spooler will not be installed if an error is detected.

The spooler does not use the standard DOS list device drivers. Hence, a previous DOS
MODE command (such as MODE LPT1 := COM1:) will have no effect on where spooler
output is sent. The allowable devices for SET_PRINTER_TO are: LPT1..LPT3 and
COM1..COM2.

Example: SET_PRINTER_TO('LPT2:'); {Set output to LPT2}
if SpoolError>0 then {Check for errors}
begin
 WriteLn('Spooler could not be installed.');
 WriteLn(SpoolErrorMsg);
 exit;
end; {may proceed to process tasks and send data to printer}

SET_PRINTER_TO(''); {Spooler uninstalled}

SET_PRINTER_TO('COM1:1200,N,8,1'); {serial port example}

 TOPAZ Technical Reference 571

__

SET_PRINT_ON procedure TZPRINT

Purpose: Enables output directed to the alternate device driver to be sent to the printer.

Declaration: SET_PRINT_ON;

Notes: See example under SET_ALTERNATE_TO.

Example: SET_PRINT_ON;
WriteLn(alternate, 'This will go to the printer.');
.
.
.
SET_PRINT_OFF;

__

SET_PRINT_OFF procedure TZPRINT

Purpose: Disables output directed to the alternate device driver to be sent to the printer.

Declaration: SET_PRINT_OFF;

Notes: This is the default setting. See example under SET_ALTERNATE_TO.

 572 TOPAZ Technical Reference

__

Set_Progress_Color_To procedure DIALOG

Purpose: Sets the color attributes used by the Set_Progress_On procedure.

Declaration: Set_Progress_Color_To(BoxFg, BoxBg, BarFg, BarBg : Byte);

Parameters: BoxFg and BoxBg are the foreground and background colors of the box. BarFg and BarBg
are the foreground and background colors of the progress bar.

Notes: The default colors are: BoxFg and BarFg are LightGray, BoxBg and BarBg are Black. See
Set_Progress_On.

Example: Set_Progress_Color_To(LightGray, Blue, White, Blue);

 TOPAZ Technical Reference 573

__

Set_Progress_On procedure DIALOG

Purpose: Draws a horizontal box and updates the length of a bar which grows linearly with the number
of records processed in a file.

Declaration: Set_Progress_On;

Notes: Many applications call for the sequential processing of records in a file, from some starting
point (often the first record) through the end of file. TOPAZ makes available the
SET_ROTOR_ON feature, which displays a spinning rotor as records are processed.
Although this provides a visual cue that the program is "busy", the end-user cannot know how
long the process will take, or how far along toward completion the process currently is.
Progress bars solve this problem by displaying a bar that grows in length from 0 to the full
width of the progress window in step with the data processing.

The call to Set_Progress_On should be made just after the database is positioned to the first
record to be processed, with the database to be processed in the current area, and before
processing starts. The call will cause an empty progress window to appear. As processing
proceeds, the progress bar will be updated. When EOF is reached, the bar will completely
fill the window. Progress bars will also work with indexed or filtered database files, and with
SET_DELETED_ON.

See Set_Progress_Off, Set_Progress_Color_To, Set_ProgressWindow_To,
SuspendProgress, and ResumeProgress.

Example: USE('customer', @customer, sizeof(customer));
Set_Progress_On;
while not dEOF do
begin
 ...
 SKIP(1);
end;
Set_Progress_Off;

 574 TOPAZ Technical Reference

__

Set_Progress_Off procedure DIALOG

Purpose: Restores the screen display after a progress bar is done.

Declaration: Set_Progress_Off;

Notes: The call to Set_Progress_Off should be made after EOF is reached when processing a file.

See Set_Progress_On.

Example: See example for Set_Progress_On.

 TOPAZ Technical Reference 575

__

Set_ProgressWindow_To procedure DIALOG

Purpose: Sets the position, style, and heading of the window area and box to be drawn when
Set_Progress_On is called.

Declaration: Set_ProgressWindow_To(Col1, Row1, Col2, Row2,
LineStyle : Byte; Heading : String);

Parameters: Col1,Row1 and Col2, Row2 are the column and row coordinates of the upper left and lower
right corners of the progress area. LineStyle specifies the symbol set to be used in drawing the
window, and is in the range of 0 to 5. The values of LineStyle and the predefined constants
are:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading is a string that will be centered on the top line of the window. If the string is longer
than the width of the window, the string will be trimmed. The optional clause WITHSCALE
can be added to the heading to force the progress bar to display a percentage scale.

Notes: The default value of Col1, Row1 is 10,12, of Col2, Row2 is 70,14 (Pascal coordinates), of
LineStyle is SingleLine, and of Heading is '' (empty string).

See Set_Progress_On, Set_Progress_Color_To.

Example 1: Set_ProgressWindow_To(5, 12, 75, 16, SolidLine + Shadow, '');

Example 2: Set_ProgressWindow_To(5, 12, 75, 16, DoubleLine,'WITHSCALE');

 576 TOPAZ Technical Reference

Example 3: Set_ProgressWindow_To(5,12,75,16,1, 'Processing... WITHSCALE');

 TOPAZ Technical Reference 577

__

SET_RELATION_TO procedure DBF4

Purpose: Causes a user-defined procedure to be called whenever the "attached" database is repositioned
(with SKIP, FIND, Go, etc.). The user-defined procedure is responsible for positioning all
satellite databases according to a desired relational link. Facilitates the programming of
relational database systems.

Declaration: SET_RELATION_TO(SyncProcPtr : Pointer);

Parameter: The SyncProcPtr parameter is a pointer to a user-defined procedure, declared FAR, that must
do whatever is required to reposition, or sync, any related database.

Notes: While similar to the dBASE SET RELATION TO, this method is much more powerful and
flexible. dBASE will allow only chained relations to indexed databases. There are no such
restrictions in the TOPAZ implementation. Systems may be created with any relational
structure, and files may be related even if the relational algorithm is based on data that is not
common to both databases. Relations can be disabled by calling SET_RELATION_TO with
a nil pointer.

The user's sync procedure will be called whenever the parent database is repositioned. In
addition, the procedure is called once when the relation is set. Thus, after a call to
SET_RELATION_TO, all child databases will be properly positioned in relation to the
parent.

The method is illustrated in the example shown below, and a more complete example can be
found in the file RELATE.PAS in the SAMPLES.ZIP file on the TOPAZ distribution disk(s).

Example: {$F+}
procedure RelateToCustomer;
begin
 SELECT(CustomerDBF);
 if dEOF then
 begin
 GoBottom;
 SKIP(1);
 end;
{ continued on the next page...}
 else
 FIND(Invoice._CUSTNO);
end;
{$F-}
.
.
USE('customer', @customer, SizeOf(customer));
SET_INDEX_TO(@CustKey, 'customer', 1);
SELECT(2);
USE('invoice', @invoice, SizeOf(invoice));
SET_RELATION_TO(@RelateToCustomer);

 578 TOPAZ Technical Reference

In this example, two databases are opened: CUSTOMER.DBF (a list of customer numbers
and names), and INVOICE.DBF (a list of invoices with a field for customer number). The
invoice database is then related to the customer database. The user-defined procedure
"RelateToCustomer" takes care of finding the record in the Customer database that
corresponds to the customer number in the invoice record. Note that RelateToCustomer does
not have to be concerned with re-selecting the invoice database, or whether the global boolean
Found has been altered. Now, whenever the invoice database is repositioned, the customer
database will automatically follow:

while not dEOF do
begin
 WriteLn(Customer._CUSTNAME,'has a balance due of ',

Invoice._BALANCE);
 SKIP(1);
end;

Be careful not to relate a file to itself, as this will result in a stack overflow error (202).

In the above example processing will stop when the primary (parent) database reaches EOF.
In a mult-file application where the relation is a chain watch out for one or more lines in the
chain failing.

 TOPAZ Technical Reference 579

__

Set_Repaint_On procedure SAYGET4

Purpose: When a ReadGets statement is executed, all fields being read are painted with the GET color
active at the time the field was defined. With Set_Repaint_On, the fields are automatically
repainted to the SAY color for that field, after the last field being read is exited by the end-
user.

Declaration: Set_Repaint_On;

Notes: This is the default setting. See Set_Repaint_Off, ClearGets, ReadGets, SET_COLOR_TO.

__

Set_Repaint_Off procedure SAYGET4

Purpose: This setting prevents the fields from being automatically repainted with the SAY color after
a ReadGets statement. If the GET color was black on white it will remain reverse video
following the ReadGets call. Set_Repaint_Off emulates the way dBASE handles the screen.

Declaration: Set_Repaint_Off;

Notes: See Set_Repaint_On, ClearGets, ReadGets, SET_COLOR_TO.

 580 TOPAZ Technical Reference

__

Set_Report_Column_To procedure REPORT4

Purpose: Specifies a pointer to a user-defined FAR string function that returns the contents of a column
in a report being printed by ReportForm.

Declaration: Set_Report_Column_To(UserFuncPtr : Pointer);

Parameter: UserFuncPtr is a pointer to user-defined function that returns a string to ReportForm. The
function must be declared FAR and cannot be nested.

Notes: REPGEN permits the programmer to specify field names for the contents of report columns,
or to identify that the data to be printed in a certain column be computed at runtime. When
ReportForm is invoked, and the contents of a column are to be computed, ReportForm will
transfer control to the user's function pointed to by UserFuncPtr. The global string
ReportColumnString will be set to the identifying string specified by the programmer in
REPGEN.

See ReportForm.

Example: { when the report was defined in REPGEN, the contents of one column was
specified as @CUSTNAME, and the contents of another as @COMPNAME }
{$F+}
function FullName : String;
begin
 if ReportColumnString = 'CUSTNAME' then
 FullName := TRIM(Customer._FIRSTNAME)+' '+

Customer._LASTNAME;
 if ReportColumnString = 'COMPNAME' then
 FullName := Customer._COMPANY + Customer._STATE;
end;
{$F-}
.
.
USE('customer',@customer,SizeOf(customer));
Set_Report_Column_To(@FullName);
ReportForm('customer TO PRINT');

{ In the above example, the programmer specified that two of the fields
in the report CUSTOMER.RPT are to be calculated at runtime. The two
columns were called 'CUSTNAME' and 'COMPNAME'. At run time, ReportForm
transfers control to the FullName function to obtain the contents of the
columns. Note that FullName makes use of the global string
ReportColumnString to establish what data needs to be returned.}

 TOPAZ Technical Reference 581

__

Set_Report_FormFeed procedure REPORT4

Purpose: Permits the programmer to control when ReportForm issues a page eject (form feed), on a
record-by-record basis.

Declaration: Set_Report_FormFeed(EjectFunc : Pointer);

Parameter: EjectFunc is a pointer to a user-defined function that returns True if ReportForm is to send
a form feed to the printer before processing the current record.

Notes: The user-defined function must be declared FAR. This function will be called by ReportForm
prior to printing a record. This allows the programmer to go on to a new page based on some
specific occurrence in the database.

See ReportForm.

Example: var CurrentChar : char;

{$F+}
function EjectOnAlphaChange:Boolean;
begin
 EjectOnAlphaChange := customer._LASTNAME[1] <> CurrentChar;
 CurrentChar := customer._LASTNAME[1];
end;
{$F-}

{open the customer database on name order, and print a report that goes
to a new page whenever the first letter of the name advances
alphabetically}

begin
 USE('customer', @customer, SizeOf(customer));
 SET_INDEX_TO(@NameKey, 'customer', 1);
 Set_Report_FormFeed(@EjectOnAlphaChange);
 CurrentChar := #0;
 ReportForm('customer TO PRINT');
end.

 582 TOPAZ Technical Reference

__

Set_Report_Separator_To REPORT4

Purpose: This procedure permits the programmer to specify a string to be sent to the output device by
ReportForm between records.

Declaration: Set_Report_Separator_To(SepFunction : Pointer);

Parameters: SepFunction points to a user-defined function that returns a string to be sent to the output
device prior to outputting the current record.

Notes: The user-defined function must be declared FAR.

See ReportForm.

Example: {$F+}
functionDashes:String;
begin
 Dashes := REPLICATE('-',80);
end;
{$F-}

{open the customer database and send a report to the printer where
records are separated by a line of 80 dashes}

begin
 USE('customer', @customer, SizeOf(customer));
 Set_Report_Separator_To(@Dashes);
 ReportForm('customer TO PRINT');
end.

 TOPAZ Technical Reference 583

__

Set_Retry_To procedure DBF4/NET

Purpose: Allows adjustment of the default number of lock attempts before a lock request fails.

Declaration: Set_Retry_To(Count, Delay : Byte);

Parameters: Count is the number of lock attempts after the original DOS attempts, and "delay" is the
number of milliseconds wait between attempts.

Notes: This is a high-level lock retry method. All calls to FLOCK, ALOCK, and RLOCK are repeated
until the lock is successful or "count" number of attempts have failed. Default count is zero.
See Set_DOS_Retry_To.

Example: {try 10 times in approximately a one second period before giving up}
Set_Retry_To(10,100);

 584 TOPAZ Technical Reference

__

Set_Rotor_On procedure DBF4

Purpose: Causes an arrow symbol to be displayed on the monitor that will appear to spin whenever
TOPAZ routines access the disk.

Declaration: Set_Rotor_On;

Notes: Often times an application program will need to process many records in a database file and
such processing may take some time. For all but the smallest databases files, it is friendly to
perform some small screen task that tells the end-user "I'm busy". The absence of a visual
indication can sometimes mislead the end-user into believing the system is crashed. The
Set_Rotor_On call provides the programmer with a simple, convenient method of indicating
that TOPAZ disk I/O is occurring. With the rotor enabled, all calls to SKIP, GO, GoTop,
GoBottom, FIND, INDEX_ON, MakeIndex, REINDEX, BROWSE, ReportForm, and PACK
will cause the rotor to spin.

The position of the rotor symbol is set by Set_Rotor_To. The color of the rotor will be the
attribute of the place on the screen where the rotor appears. See Set_Rotor_Off,
Set_Rotor_To, AdvanceRotor.

__

Set_Rotor_Off procedure DBF4

Purpose: Disables the display of a spinning rotor when TOPAZ I/O is occurring.

Declaration: Set_Rotor_Off;

Notes: This is the default setting. See Set_Rotor_To, Set_Rotor_On, AdvanceRotor.

 TOPAZ Technical Reference 585

__

Set_Rotor_To procedure DBF4

Purpose: Specifies where the TOPAZ I/O activity rotor will be displayed.

Declaration: Set_Rotor_To(Col, Row : Byte);

Parameters: Col and Row are the column and row coordinates in either Pascal or dBASE convention (see
Set_Coordinates_To). The default values in Pascal coordinates are 80,1, resulting in the rotor
spinning in the upper right hand corner of the display. These coordinates are relative to the
currently active Pascal window.

Notes: See Set_Rotor_On/Off, AdvanceRotor.

 586 TOPAZ Technical Reference

__

SET_SAFETY_ON procedure DBF4

Purpose: Instructs TOPAZ to require confirmation at run time for any calls to SET_ALTERNATE_TO,
MakeIndex, PACK, ZAP, INDEX_ON, CopyStruTo, and CopyTo.

Declaration: SET_SAFETY_ON;

Notes: See SET_SAFETY_OFF, SET_ALTERNATE_TO, ZAP, PACK, MakeIndex, INDEX_ON,

CopyStruTo, CopyTo.

__

SET_SAFETY_OFF procedure DBF4

Purpose: Instructs TOPAZ to process calls to CopyStruTo, CopyTo, SET_ALTERNATE_TO,
INDEX_ON, MakeIndex, ZAP, and PACK without confirmation.

Declaration: SET_SAFETY_OFF;

Notes: This is the default setting. See SET_SAFETY_ON, ZAP, PACK, CopyStruTo, CopyTo,

INDEX_ON, MakeIndex, SET_ALTERNATE_TO.

 TOPAZ Technical Reference 587

__

SET_SCOREBOARD_ON procedure SAYGET4

Purpose: Allows messages generated during a ReadGets call to be displayed on the "scoreboard" line
of the screen (normally the top line). These messages are displayed when an out of range value
or an invalid date is input and SCOREBOARD is set ON.

Declaration: SET_SCOREBOARD_ON;

Notes: This is the default setting. See SayGet, RANGE, WAIT, Set_ScoreBoard_To,
SET_SCOREBOARD_OFF,
ReadGets.

__

SET_SCOREBOARD_OFF procedure SAYGET4

Purpose: Inhibits all messages generated during ReadGets and WAIT from being displayed on the
"scoreboard" line.

Declaration: SET_SCOREBOARD_OFF;

Notes: Unlike dBASE, SET_SCOREBOARD_OFF does not clear the screen. See SayGet,
RANGE, WAIT, ReadGets, SET_SCOREBOARD_ON.

 588 TOPAZ Technical Reference

__

Set_ScoreBoard_To procedure SAYGET4

Purpose: Set the row number that SCOREBOARD messages are written to when
SET_SCOREBOARD_ON has been called.

Declaration: Set_ScoreBoard_To(Row : Byte);

Parameter: Row is the row number in the active coordinate system, default for Pascal = row 1, for dBASE
coordinates = row 0.

Notes: See also SET_SCOREBOARD_ON/OFF and
Set_Coordinates_To.

 TOPAZ Technical Reference 589

__

Set_ScreenHelp_To procedure SCRENGET

Purpose: Provides an alternate method of pointing DoScreenGets and ScreenEdit to user-defined
autohelp routines.

Declaration: Set_ScreenHelp_To (HelpProc : Pointer);

Parameters: HelpProc is the address of a user-defined procedure that will be called before editing is
permitted in each field of a SAYWHAT?! data entry screen.

Notes: The HelpProc procedure acts as a global autohelp routine for all the data entry fields
embedded in the data entry screen. For example, in a screen with three data fields, the
following code in your program:

Set_ScreenHelp_To (@MyHelpProc);
DoScreenGets ('MyScreen', EditMode, Nil);
Set_ScreenHelp_To (Nil);

effectively does a Set_AutoHelp_To(@MyHelpProc) attached to each of the three data fields.

Your procedure MyHelpProc will be called as the cursor enters each data field. MyHelpProc
must be able to determine what the current field. Below, we make use of ScreenFieldNames
to make the determination:

procedure MyHelpProc;
var ThisDBF : String10;

ThisField : String10;
begin
 ScreenFieldNames (ThisDBF, ThisField);
 if ThisField = 'FIELD1' then Field1Help;
 if ThisField = 'FIELD2' then Field2Help;
 if ThisField = 'FIELD3' then Field3Help;
end;

Notice in the example code above, the 3rd parameter in the DoScreenGets call is Nil
indicating that no user-callback routine is being used. If a user-callback routine is specified
in the DoScreenGets call, then the procedure pointer specified in Set_ScreenHelp_To is
ignored, and the autohelp routine specified by the user-callback routine is used. All of the
above comments apply to calls to ScreenEdit.

 590 TOPAZ Technical Reference

__

Set_ScreenSaver_On procedure TZSAVER

Purpose: Activates the TOPAZ screen saver system.

Declaration: Set_ScreenSaver_On;

Notes: When this procedure is called, TOPAZ takes over the screen (or window) and displays in a
background process any of the several screen saver "shows". The foreground process may
continue to process data and write to any part of the screen outside of the screen saver
window. The screen saver continues to display until a call to Set_ScreenSaver_Off. Since the
screen saver is a background process hooked into the timer tick interrupt, the TZSAVER unit
cannot be overlayed, and it is imperative that a call to Set_ScreenSaver_Off or SuspendISRs
be made before you exit or swap to DOS. Even though the TOPAZ clock (activated by
Set_Clocks_On) and the screen saver are in line in the timer tick interrupt chain, the order in
which they are de-activated is not important (i.e., TOPAZ manages the restoration of the
interrupt chain when an Interrupt Service Routine (ISR) is de-activated). See
Set_SSWindow_To, Set_SSType_To, and the section "TOPAZ Screen Savers" in the Tutorial
part of this manual.

Example 1: {simple full-screen saver using all default values}
Set_ScreenSaver_On;
repeat until keypressed;
Set_ScreenSaver_Off;
{displays falling confetti in full-screen mode until a key is pressed}

Example 2: Set_SSWindow_To(1,1,20,25,DoubleLine,'Hooray');
Set_SSType_To(Confetti);
Set_ScreenSaver_On; {confetti is falling in the left window}
Set_BrowseWindow_To(21,1,80,25,DoubleLine,'This is great');
USE('customer',nil,0);
BROWSE('');

{we are actively BROWSEing the customer file on the right hand portion
of the screen, while confetti is falling in the left window! Confetti
will continue to fall until a call to Set_ScreenSaver_Off.}

 TOPAZ Technical Reference 591

__

Set_ScreenSaver_Off procedure TZSAVER

Purpose: De-activates the TOPAZ screen saver system.

Declaration: Set_ScreenSaver_Off;

Notes: Even though the TOPAZ clock (activated by Set_Clocks_On) and the screen saver are in line
in timer tick interrupt chain, the order in which they are de-activated is not important (i.e.,
TOPAZ manages the restoration of the interrupt chain when an Interrupt Service Routine
(ISR) is de-activated).
See Set_ScreenSaver_On, Set_SSWindow_To,
Set_SSType_To, and the section "TOPAZ Screen Savers" in the Tutorial part of this manual.

 592 TOPAZ Technical Reference

__

Set_ScreenShadow_On procedure VIDPOP

Purpose: Specifies that TOPAZ add a standard transparent drop shadow to all SAYWHAT?! sub
screens and menus.

Declaration: Set_ScreenShadow_On;

Notes: When a subscreen or menu is created with SAYWHAT?!, you cannot add a transparent
shadow, since the text underlying the screen at run time is unknown. The procedure modifies
the way in which SAYWHAT?! screens are displayed to automatically include the drop
shadow at run time. Affects all SAYWHAT?! screen display routines: PopSqz, PopScreen,
PopLib, and PopLibMem. See Set_ScreenShadow_Off.

Example: Set_ScreenShadow_ON; {called only one}
PopScreen(@SubMenu); {affects all subsequent SAYWHAT?! screen display

calls}
.
.
.

__

Set_ScreenShadow_Off procedure VIDPOP

Purpose: Specifies that drop shadows not be added to SAYWHAT?! sub screens and menus.

Declaration: Set_ScreenShadow_Off;

Notes: See Set_ScreenShadow_On;

 TOPAZ Technical Reference 593

__

Set_ScreenValidate_To procedure SCRENGET

Purpose: Provides an alternate method of pointing DoScreenGets and ScreenEdit to user-defined
validation routines.

Declaration: Set_ScreenValidate_To (ValidateProc : Pointer);

Parameters: ValidateProc is the address of a user-defined procedure that will be called after editing is
completed in each field of a SAYWHAT?! data entry screen (i.e, as the cursor leaves the
field).

Notes: See Set_ScreenHelp_To for a description and example. Set_ScreenValidate_To works
exactly the same way, except the ValidateProc pointer is used as a switching station to
validation routines.

 594 TOPAZ Technical Reference

__

Set_Search_To procedure DBF4

Purpose: Turns program control over to a user-defined procedure whenever a record is found by the
Search procedure.

Declaration: Set_Search_To (UserRoutine : Pointer).

Parameter: UserRoutine is a pointer to FAR user-defined procedure.

Notes: Whenever Search finds a "hit", control is turned over to the user's procedure pointed to by
UserRoutine. The procedure can then examine the and process the found record. When the
scanning procedure returns, Search takes up where it left off. If the user's procedure wants
to stop searching, it must set the global ExitSearch to True.

If there is no UserRoutine specified (the default), then the field number returned by Search
indicates if a record was found and which field the string was found in. However, if there is
a UserRoutine, then the (global) field number parameter can be used by the UserRoutine to
indicate where the match was located. At the end of the Search, the FieldNo parameter will
indicate what happened on the last Search attempt. In order to know if anything was found,
or how many records were found, the UserRoutine should keep track. See Search, SearchFile.

Example 1: {The first 1000 records of a database are Searched for all occurrences

of the string: 'G. Willikers' and then displayed on the screen}

var SearchField : Byte;
 NumberFound : Integer;

{$F+}
procedure AnnounceAndCount;
begin
 WriteLn ('Record ', RecNo, ' matches the search string');
 Inc (NumberFound);
 if RecNo > 1000 then ExitSearch := True;
end;

{continued on the next page...}

 TOPAZ Technical Reference 595

begin
 Set_Search_To (@AnnounceAndCount);
 NumberFound := 0;
 SearchField := 0; { search every field }
 Search ('G. Willikers', SearchField, True);
 Set_Search_To (nil);

 {use NumberFound to know if anything was found}
 if NumberFound > 0
 then
 begin
 { Do whatever needs to be done here! }
 end;
end.

Example 2: {Put all found records in a virtual file}
var SearchField : Byte;

{$F+}
procedure AddToVirtualFile;
begin
 SelectAlias('*temp*');
 APPEND;
 SelectAlias('customer');
end;

begin
 USE('*temp* VIRTUAL FILE', @Customer, SizeOf(customer));
 SELECT(0);
 USE('customer', @Customer, SizeOf(customer));
 Set_Search_To (@AddToVirtualFile);
 SearchField := 0; { search every field }
 Search ('G. Willikers', SearchField, True);
 Set_Search_To (nil);
 SelectAlias('*temp*');
 {now process the subset of records collected in the virtual

file}
 .
 .
 .
end.

 596 TOPAZ Technical Reference

__

Set_SnowProtection_On procedure VIDPOP

Purpose: Screens and saved windows will be displayed with snowless routines if the current monitor
is a CGA.

Declaration: Set_SnowProtection_On;

Notes: Only effects performance on CGA systems, and has no effect on EGA or VGA systems. This
is the default setting.

__

Set_SnowProtection_Off procedure VIDPOP

Purpose: Screens and saved windows will be displayed without regard for snow even if the current
monitor is a CGA.

Declaration: Set_SnowProtection_Off;

 TOPAZ Technical Reference 597

__

Set_Soundex_To procedure INDEX4

Purpose: Sets the number of characters to be used in the Soundex indexing algorithm.

Declaration: Set_Soundex_To(KeyLength : Byte);

Parameter: KeyLength is the number of characters used in the Soundex algorithm.

Notes: The Soundex algorithm translates strings to a fixed numerical length key representative of the
phonetic sound of the string. The default length of the mapped Soundex key is 4 characters.
This procedure allows the programer flexibility in establishing a length that is optimum for
a specific application. The procedure must be called prior to opening or creating any Soundex
indexes. See MakeIndex, INDEX_ON, SET_INDEX_TO.

Example: {by trial-and-error, the programmer has determined that a 6-char Soundex
key has the highest success rate in finding records for a certain
database. The code therefore calls Set_Soundex_To in its initialization
section}

Set_Soundex_To(6);

 598 TOPAZ Technical Reference

__

Set_Spooler_On procedure SPOOLER

Purpose: Establishes a buffer with the same size as it was prior to a call to Set_Spooler_Off, and re-
installs the ISR. The printer specified with the last call to SET_PRINTER_TO is remembered
and used.

Declaration: Set_Spooler_On;

Notes: The combination of Set_Spooler_Off and Set_Spooler_On are intended to make removing
the spooler more efficient (instead of calling SET_PRINTER_TO).
See SET_PRINTER_TO, Set_Spooler_Off.

__

Set_Spooler_Off procedure SPOOLER

Purpose: Disables the Interrupt Service Routine (ISR) and disposes of the spool buffer.

Declaration: Set_Spooler_Off;

Notes: See Set_Spooler_On, SET_PRINTER_TO.

 TOPAZ Technical Reference 599

__

Set_Spooler_Size procedure SPOOLER

Purpose: Specifies the size of the spooler's internal buffer in bytes.

Declaration: Set_Spooler_Size(BufSize : Word);

Parameter: BufSize is the buffer size from 1 byte to 64K minus 16 (1 to $FFF0) bytes. The default size
is 8K bytes.

A parameter of zero causes the spooler to be un-installed and the existing buffer destroyed.
Subsequent calls with a non-zero value will re-install the spooler.

Notes: Resetting the buffer size will cancel the current printing task if the spooler is active. A spooler
error will be generated if there is insufficient memory for the buffer size specified.

When sending data to the printer via the spooler and the buffer fills up, the spooler will
attempt to slow down your program in order to allow the spooler to print characters from the
buffer. If the printer is too slow, or the buffer is too small, the buffer will overflow and a
timeout will be issued and the global variable SpoolError will be set to 254. If the
Write(lst,...) statement is not protected by turning I/O checking off {$I-} then a runtime error
160 will be generated. This will cause the program to terminate and the spooler unit exit
procedure will gain control (just as it always does if a program terminates before the spool
buffer is empty).

As before, the exit procedure will display the number of characters left in the buffer and will
allow you to wait for the remaining characters to finish printing. When the buffer becomes
empty or the end-user presses <Esc> then the exit procedure will return. If a runtime error was
generated when the buffer overflowed then the runtime error message from Turbo Pascal will
be displayed on the screen only after the exit procedure returns. Example 2 below shows one
way to detect and avoid that situation.

Example 1: Set_Spooler_Size($400);
{Spooler set to 1024 bytes}

 600 TOPAZ Technical Reference

Example 2: { how to detect and avoid spooler buffer overflow}

RetryCount := 0;
while (not eof(TextFile)) and (RetryCount < 200) do
 begin
 readln(TextFile,s);
 RetryCount := 0;
 repeat
 {$I-}
 writeln(Lst,s);
 {$I+}
 Inc(RetryCount);
 until (IOResult = 0) or (RetryCount= 200);
 end;
if RetryCount = 200 then
 begin
 if Spooler.SpoolError = 254 then { buffer overflowed }
 if (Spooler.RealPrinterStatus = 0) or

(Spooler.RealPrinterStatus = 32) then
 { the reason is that the printer is not selected }
 .
 .
 .
 end;

 TOPAZ Technical Reference 601

__

Set_SSType_To procedure TZSAVER

Purpose: Specifies which of the several continuous "shows" are to be displayed when the screen saver
is activated.

Declaration: Set_SSType_To(ShowType : Byte);

Parameter: ShowType can be any of the following values (or predefined constants):

Confetti = 0
Rockets = 1
Spiders = 2

Notes: The default value of ShowType is 0 (confetti).

 602 TOPAZ Technical Reference

__

Set_SSWindow_To procedure TZSAVER

Purpose: Specifies the size, location, border line style, and heading for screen-saver windows when the
screen saver system is activated.

Declaration: Set_SSWindow_To(Col1, Row1, Col2, Row2 : Byte;
LineStyle : Byte; Heading : String);

Parameters: The column and row coordinates Col1, Row1, Col2, and Row2, specify the outer boundary
of the screen saver window. Coordinates may be given in either the dBASE or Pascal
convention and order. LineStyle specifies whether a box is to be drawn inside the window, and
can range from 0 to 5 with the following predefined constants:

NoLine = 0
SingleLine = 1
DoubleLine = 2
SolidLine = 3
SingleTopDoubleSide = 4
DoubleTopSingleSide = 5

The last two styles make use of the "mixed" box parts (single and double lines).

In addition, the following modifiers can be added to LineStyle, resulting in further visual
effects on how the box is displayed (see the Box procedure on page 194 for a detailed
explanation):

Raised = 16
Recessed = 32
Explode = 64
Shadow = 128

Heading specifies an optional string that will be displayed in the center (if possible) of the top
line of the rectangle.

Example: Set_SSWindow_To(5,5,65,20, SolidLine + Shadow,'');

 TOPAZ Technical Reference 603

__

Set_Status_Bottom procedure VIDPOP

Purpose: After a call to Set_Status_Bottom, standard 24 line SAYWHAT?! screens will be displayed
with room for a status line at row 25.

Declaration: Set_Status_Bottom;

__

Set_Status_Top procedure VIDPOP

Purpose: After a call to Set_Status_Top, standard 24 line SAYWHAT?! screens will be displayed with
room for a status line at row 1.

Declaration: Set_Status_Top;

Notes: This is the default setting.

 604 TOPAZ Technical Reference

__

Set_SubGroup_To procedure REPORT4

Purpose: Permits the programmer to specify a user-defined routine that labels subgroups during
execution of ReportForm.

Declaration: Set_SubGroup_To(SubGroupStringProc : Pointer);

Parameter: SubGroupStringProc is a pointer to a user-defined string function.

Notes: Normally, ReportForm generates its own SubGroup heading while printing reports where
groups and subgroups have been specified with REPGEN.EXE. The user-defined function
specified by Set_SubGroup_To allows the programmer to substitute a custom SubGroup
heading. The function must be declared FAR.

This routine affects the report in the same way as the Set_Group_To procedure. See
Set_Group_To for further discussion.

 TOPAZ Technical Reference 605

__

Set_Tag procedure PICK

Purpose: Permits the programmer to pre-tag items prior to calling TagItems.

Declaration: Set_Tag(i : Integer);

Parameters: i is the ith item in the tag list to be pre-tagged.

Notes: Normally the TagItems function displays a list of items and the user is free to tag and untag
items for further processing. In certain applications, the programmer may which to initialize
the list with certain items that are tagged as soon as they are displayed. Set_Tag provides this
ability.

Example: {display a tag list of state names. Pre-tag Alabama and Wyoming}
{$F+}
function ShowState(var i : Integer) : String;
begin
 case i of
 1 : ShowState := 'Arkansas';
 2 : ShowState := 'Alabama';

 .
 .
 .
 50 : ShowState := 'Wyoming';
 end;
end;
{$F-}

begin
 Set_Tag(2);
 Set_Tag(50);
 n := TagItems(@ShowState, 1, 50, 1);
 .
 .
end;

 606 TOPAZ Technical Reference

__

Set_Tag_Color_To procedure PICK

Purpose: Establishes the colors for the TagFiles or TagItems routines.

Declaration: Set_Tag_Color_To(TextFg, TextBg, BarFg,
BarBg : Byte);

Parameters: The TextFg and TextBg colors are the foreground and background colors of the text in the tag
window. The BarFg and BarBg are the colors of the highlighted item in the tag window. The
color of the tag marks is the foreground color specified by Set_Highlight_To.

Notes: See TagFiles, TagItems.

 TOPAZ Technical Reference 607

__

Set_TagOrder_On procedure PICK

Purpose: Determine the order in which strings are returned by TaggedFiles or TaggedItems.

Declaration: Set_TagOrder_On;

Notes: Set_TagOrder_On will cause items to be returned to the program in the order that the end-
user actually tagged the items. This is the default setting. See Set_TagOrder_Off.

__

Set_TagOrder_Off procedure PICK

Purpose: Establishes the order in which strings are returned by TaggedFiles or TaggedItems.

Declaration: Set_TagOrder_Off;

Notes: Set_TagOrder_Off will cause items to be returned to the program in the order they were
displayed in the tag window, not in the order that the end-user actually tagged the items. See
Set_TagOrder_On.

 608 TOPAZ Technical Reference

__

Set_TagWindow_To procedure PICK

Purpose: Establish the window characteristics for the TagFiles and TagItems routines.

Declaration: Set_TagWindow_To(Col1, Row1, Col2, Row2 : Byte;
LineStyle : Byte; Heading : String);

Parameters: Col1 and Row1 are the upper left corner of the Tag Window. Col2 and Row2 are the lower
right corner of the window. The LineStyle is any valid line style description to be used for the
box around the tag window. Heading is a string of characters to appear in the top of the tag
window box.

 TOPAZ Technical Reference 609

__

SET_TALK_ON procedure DBF4

Purpose: Enables display of record count during PACK and CopyTo operations.

Declaration: SET_TALK_ON;

Notes: See PACK, CopyTo, SET_TALK_OFF.

__

SET_TALK_OFF procedure DBF4

Purpose: Disables display of record count during PACK and CopyTo operations.

Declaration: SET_TALK_OFF;

Notes: This is the default setting. See PACK, CopyTo, SET_TALK_ON.

 610 TOPAZ Technical Reference

__

Set_Timeout_To procedure SAYGET4

Purpose: Normally, ReadGets will wait forever for data to be entered. Set_Timeout_To can be used
in those applications where the absence of the end-user's response should result in some
corrective action (returning to a main menu, for instance). Set_Timeout_To specifies the
maximum number of seconds that ReadGets will wait for a keystroke. Each character typed
will restart the timer. Timeout value effects all fields and all ReadGets until set to another
value.

Declaration: Set_Timeout_To(Duration : Word);

Parameter: Duration is the timeout value in seconds.

Notes: The global EditResult will be set to a value of 3 if ReadGets terminated by a timeout. Setting

Duration to zero results in an infinite wait time (the default setting).

Example: Set_Timeout_To(60);
SayGet(10,10,'Enter choice: ',choice,_C,1,0);
ReadGets;
if EditResult = 3 then Exit; {return to main menu}

 TOPAZ Technical Reference 611

__

Set_Validate_To procedure SAYGET4

Purpose: Causes control to branch to a user-defined procedure whenever a data entry field is exited
during a ReadGets operation. Access is available to the SayGet buffer containing the string
entered by the end-user, via the global pointer variable SGBuffer. The user-defined procedure
can validate the data according to user-defined rules, and even modify the data. If the
procedure sets the global boolean SGFieldOK to true, the ReadGets operation resumes on the
next data entry field. If the procedure sets SGFieldOK to false, ReadGets will "re-read" the
field. In other words, the cursor will not be allowed to move out of the field until the validation
procedure allows it to.

Declaration: Set_Validate_To(Proc : Pointer);

Parameter: Proc points to the user-defined procedure.

Notes: The user-defined procedure cannot require any parameters, must be declared as a FAR
procedure, and cannot be nested inside another routine. If altering data pointed to by
SGBuffer, you must be careful not to change the size of the data variable. In all cases,
SGBuffer points to the string representation of the variable being entered. Recursion is
allowed (i.e., the user-defined procedure is permitted to call SayGet). Validation routines
should not move the database record pointer. See Set_AutoHelp_To, Set_FKey.

Suppose a certain SayGet field prompts for the name of the state, and we wish to accept only
the valid two character state abbreviations. A user-defined procedure to validate the data
entered follows in example 1 below.

When directly editing database fields with SayGet it is very important that any validation
routines, specified with Set_Validate_To, must not change the record pointer of the database
whose fields are being edited. If the record pointer is moved with a command such as FIND,
SKIP, GO, etc. it is possible that any changes to field contents which have been edited up to
that point will be irretrievably lost even if the validation routine repositions the database when
finished. On the other hand, it is perfectly valid for a validation routine to do a lookup in
another file whose fields are not currently being edited. The safest method is to do editing on
a copy of the database fields rather than on the actual fields. This is easily done as shown in
example 2 below.

You can reference SAYGET.SgFieldEdited to find out if the end-user actually modified this
field prior to the validation routine being called.

Example 1: {$F+} {User-defined procedure must be declared FAR}
procedure StateLookup;
const validstates = 'AK~AL~AR~AZ~CA~CO~CT~DC~DE~FL~GA~'+

'HI~IA~ID~IL~IN~KS~KY~LA~ME~MD~MA~'+
'MI~MN~MS~MO~MT~NE~NV~NJ~NM~NY~NC~'+

 612 TOPAZ Technical Reference

'ND~NH~OH~OK~OR~PA~RI~SC~SD~TN~TX~'+
'UT~VT~VA~WA~WV~WI~WY~';

begin
 SGFieldOK := pos(SGBUFFER^,validstates) > 0;
end;
{$F-}

procedure Example;
begin
 SayGet(col, 9,'State..... ',state,_S,2,0);
 PICTURE('AA');
 Set_Validate_To(@StateLookup);
 ReadGets;
end;

Example 2: var Temp : YourDatabaseRecordType; {must be Global}
procedure EditDBFRecord;
var Rec : LongInt;
begin
 Rec := RecNo; {save the current database position}
 Temp := YourDatabaseRecordVar;
 with Temp do {with the temporary copy of the record}
 begin
 . {do your SayGets and Validations here}
 . {validation routines may position any database safely}
 .
 ReadGets;
 end;
 GO(Rec); { make sure database is properly repositioned }
 if EditResult <= 0 then
 begin
 Your DatabaseRecordVar := Temp;
 REPLACE; {write new data over original on disk }
 end;
end;

See the demo program SGDEMO.PAS in the SAMPLES.ZIP file on the TOPAZ distribution
disk(s) for additional examples and usage of Set_Validate_To.

 TOPAZ Technical Reference 613

__

Set_VFileKey_To procedure VFILES

Purpose: Specifies a pointer to a key maker function for the currently selected virtual file (linked list)
to be used by SortVFile.

Declaration: Set_VfileKey_To(KeyMaker : Pointer);

Parameter: KeyMaker is a pointer to a programmer-defined string function that returns the key for the
current record.

Notes: Virtual Files keymakers are constructed identically to index keymakers. The
Set_VFileKey_To procedure can be called at any time, but must be called:

1. prior to adding records to a virtual file whose mode is either ASCENDING or
DESCENDING, or

2. prior to calling the SortVFile procedure.

Therefore, it is possible to open and build an unsorted virtual file, then specify a key and then
sort the file. If you wish to build the virtual file in sorted order you would first open the virtual
file with a USE statement and then specify the keymaker prior to adding records. See
SortVFile, IndexOn.

Example: USE('MyFile VIRTUAL FILE ASCENDING', @MyData, SizeOf(MyData));
Set_VFileKey_To(@MyKeyMaker);
while not EOF(DataSource) do
 begin
 ReadLn(DataSource, MyData);
 APPEND;
 end;

 614 TOPAZ Technical Reference

__

Set_VFileMode_To procedure VFILES

Purpose: Redefines the manner in which virtual files append new records, after the virtual file has been
opened.

Declaration: Set_VFileMode_To (NewMode : LStatusType);

Parameter: NewMode can be any of the following enumerated type elements:

FIFO or, First-In-First-Out, appends records to the top of the file. This is the
traditional disk file method. New records are appended to the bottom of
the file, so the oldest record in the list is on the top, and the newest one is
on the bottom.

LIFO or, Last-In-First-Out, appends records to the bottom of the file. This is the
opposite of the traditional disk file method. New records get appended
onto the Top of the file, so the oldest record in the file is on the bottom,
and the newest one is on the top.

INSERTION appends records after the current record. This allows you to physically
insert records into the middle of the list. New records are "spliced" into
the Virtual File immediately following the current record, and the newly
inserted record then becomes the current record.

ASCENDING appends records in ascending order.

DESCENDING appends records in descending order.

Notes: Unlike a disk file, a virtual file (linked list) can add records in any of a number of ways (as
shown above). You specify the appending "mode" in the USE statement (when the virtual file
is opened), and later redefine it with Set_Vfilemode_To. However, you cannot set the mode
to ASCENDING or DESCENDING if there is more than one record in the file. Since a Virtual
File is stored in memory as a linked list, there is no reason to be limited to only being allowed
to add items to the end of the "file". The "mode" of the Virtual File is used to determine how
new items are added to the list, and consequently, what order things appear to be in later. The
default mode is FIFO. See USE, SortVFile.

 TOPAZ Technical Reference 615

__

SET_WHILE_TO procedure DBF4

Purpose: Permits the programmer to specify a user-defined function that allows processing of records
anywhere to continue until the function returns False.

Declaration: SET_WHILE_TO(WhileFunc : Pointer);

Parameter: WhileFunc is a pointer to a user-defined boolean function that returns True for each record
to be processed by ReportForm or BROWSE, and False to indicate that no more records are
to be processed.

Notes: In practice, the programmer should position the currently selected database to the first record
to be processed, and the database should be ordered such that all records to be processed are
group together. The user-defined "while" function then returns True until the first record that
is outside the desired group is reached. The user-defined function must be declared FAR.

Programs that take advantage of SET_WHILE_TO should follow these rules:

 # Position the file first, presumably to the first record in the "WHILE group".

 # Call SET_WHILE_TO. The WHILE function should then start off returning True.

 # Only use SKIP to position the file, rather than GO, GoTop, or GoBottom (see
below). Note that dEOF and dBOF will become True whenever you attempt to go
past the true edges of the file, or past the "edges" of the "WHILE group". Note that
dBOF will work identically in either case: the file is positioned to the first OK record
in the file. However, dEOF works slightly differently: if you go past the true EOF,
dEOF will be set true, RecNo will be set to RecCount+1, and your data buffer will
be cleared. If you go past the WHILE group, dEOF will be set to true, and you will
be positioned to the first record beyond the WHILE group. This mimics the dBASE
implementation of SET WHILE TO. Thus, you can use constructs like the one given
in the example below:

SET_WHILE_TO(@MyWhileFunction);
while not dEOF do
begin
 DoSomethingHere;
 SKIP(1);
end;
SET_WHILE_TO(NIL);

 # Don't use Go, GoTop, or GoBottom. They can jump you out of the WHILE group,
and then you will be undefined territory!

 # When done, remember to SET_WHILE_TO(NIL) so you can proceed normally.

 616 TOPAZ Technical Reference

SET_WHILE_TO automatically affects BROWSE, ReportForm, PickList, TagItems, and
LIST. Thus, you can pick a continguous group of records and BROWSE just those records as
if they constituted a "sub-file", without any performance penalty (as you would encounter by
filtering, or writing to a temporary file).

Each open database can have its own SET_WHILE_TO.

Example: {$F+}

function WhileAlaska : Boolean;
begin
 WhileAlaska := customer._STATE = 'AK';
end;
{$F-}

{open the Customer database in State order, and BROWSE only the
customers in Alaska}
begin
 USE('customer', @customer, SizeOf(customer));
 SET_INDEX_TO(@StateKey, 'customer', 1);
 FIND('AK');
 SET_WHILE_TO(@WhileAlaska);
 BROWSE('');
 SET_WHILE_TO(NIL);
end;

 TOPAZ Technical Reference 617

__

SField function DBF4

Purpose: Returns the string representation of a database field.

Declaration: SField (FieldNumber : Byte) : String;

Parameter: FieldNumber must be in the range 1 .. FieldCount;

Example: {simple display record data routine}
for i := 1 to FieldCount do WriteLn(SField(i));

 618 TOPAZ Technical Reference

__

SgFieldEdited function SAYGET4

Purpose: Returns True if the current field has been edited by the end-user, False otherwise.

Declaration: SgFieldEdited : Boolean;

Notes: This function is intended to be called from validation routines to determine if the end-user has
actually modified the contents of the field. Any change to the field via pressing normal keys
or the delete key, <Ctrl-Y>, etc., will cause this function to return True. Just like the IOResult
function, calling this function resets the boolean variable that it tests, so it can only be tested
once after each field is exited. See SayGet, ReadGets, Set_Validation_To.

Example: {$F+}
procedure CheckState;
begin
 if SgFieldEdited then {only do this work if end-user actually

edited the field}
 begin
 SelectAlias('StateNames');
 FIND(SGBuffer^);
 if not Found then
 begin
 .
 .
 end;
 SelectAlias('customer');
 end;
end;

begin {of program or procedure of interest}
 SayGet(5,5,'State: ',customer._STATE,_S,2,0);
 Set_Validate_To(@CheckState);

 ReadGets;
 .
 .
end.

 TOPAZ Technical Reference 619

__

SGFieldType function SAYGET4

Purpose: Returns the data type of the field where the cursor is currently positioned during a ReadGets
session.

Declaration: SGFieldType: VarTypes;

Notes: This function is only valid when called from an AutoHelp, Validation, or FKey routine. See
also Set_AutoHelp_To, Set_Validate_To, Set_FKey_To.

Example: {in this example, the <F1> key will only pop up the calendar, when the
cursor is in the first field}

procedure Calendar; Far;
begin
 if SGFieldType = _D then SGBuffer^ := SelectDate(SGBuffer^);
end;

SayGet(1,1,'', Today, _D, 8, 0);
SayGet(1,2,'', Time, _T, 8, 0);
SetFKey(F1,@Calendar);
ReadGets;
SetFKey(F1,Nil);

 620 TOPAZ Technical Reference

__

ShowMouse procedure TZCOMMON

Purpose: Causes Mouse cursor to be displayed.

Declaration: ShowMouse;

Notes: Displays the Mouse cursor only if it matches the level of the call to HideMouse that actually
changed the visibility of the Mouse cursor.

If you plan to write data to the screen using Write, Writeln, or any method that relies on the
BIOS video interrupt ($10), it is possible for the Mouse cursor to leave unintended
"droppings". The solution to this problem is to call HideMouse before such screen display,
and then ShowMouse after the screen display. If the Mouse was already hidden before the call
to HideMouse, ShowMouse will not cause the Mouse cursor to become visible. Any call to
At, Paint, or ClrScr, ClearEol, or any other TOPAZ screen display routine will automatically
hide and show the Mouse. When a routine turns off the Mouse cursor with HideMouse any
subroutine may also call HideMouse and ShowMouse for whatever reason without worry of
causing the Mouse cursor to be visible prematurely.

Unless the programmer wants to add additional Mouse support it is normally not necessary
to call HideMouse or ShowMouse since TOPAZ automatically calls them when appropriate.

Example 1: {write to the screen preventing Mouse "droppings"}
HideMouse;
Writeln('Here is some data');
ShowMouse;

Example 2: { write to the screen using At() }
At(1,1,'Here is some data');
{ ShowMouse and HideMouse are not necessary, since At() deals with the
problem internally }

 TOPAZ Technical Reference 621

__

SInteger function SAYGET4

Purpose: Returns the string representation of an integer right justified in a string of specified length.
Numbers which will not fit in the specified width will cause the returned string to be of
sufficient width to accommodate them.

Declaration: SInteger(I : LongInt; W : Byte) : String;

Parameter: I is the byte, integer, word, or long integer to be converted, W is the width of the string
returned.

Notes: If W is zero, SInteger returns the minimum width to accommodate the number.

Example: At(1,10,'Count:'+SInteger(count,4));

 622 TOPAZ Technical Reference

__

SKIP procedure DBF4

Purpose: Causes the selected dBASE database to move a specified number of records. A positive
number will move the record pointer to a higher record number and a negative number will
move the record pointer to a lower record number. Emulates the dBASE SKIP command,
except that it must have a parameter.

Declaration: SKIP(N : LongInt);

Parameter: N is the relative number of records to skip.

Notes: After a SKIP the associated user record will contain the data from the resulting dBASE
record. If the requested record is before the beginning of file (Record 0 or less for an
unindexed file, or before the first record in indexed order if an index is set), the database is
positioned to the first record and dBOF is set True. If the requested record is past the end of
file, the database is position to a blank "pseudo record" of record number RecCount + 1, and
dEOF is set to True. Attempting to REPLACE data when dEOF is True will generate an error.

If a primary index is active, SKIP moves a relative number of ordered records. Any changes
to the data currently in memory will be lost unless a REPLACE or APPEND is called before
SKIP. See dEOF and dBOF. If SET_DELETED_ON is in effect, or a FILTER is active,
SKIP will move n number of valid records. Emulates the dBASE SKIP command except that
it must always have a parameter. Thus, use SKIP(1) for SKIP.

SKIP(0) re-reads the current record from disk. If any databases are related to the current
database a SKIP(0) will cause them to be re-aligned according to the contents of the current
record just as a normal SKIP command would do. SKIP(0) does a ClearRecord if RecCount
= 0 or dEOF = True.

Example: while not dEOF do
begin
 WriteLn(Customer._Lastname);
 SKIP(1);
end;

 TOPAZ Technical Reference 623

__

SnipRec procedure VFILES

Purpose: Removes the current record from a Virtual File.

Declaration: SnipRec;

Notes: SnipRec removes the current record out of the linked list and deallocates the record's memory.
The contents of the user's record buffer are not altered, so the data from the record just
removed is still available in the buffer.

After SnipRec is complete, the current RecNo remains the same, that is, if you were on record
10 and snipped it out, you are still positioned to record 10 in that database (the record that was
number 11 prior to the snip). The only exception to this is when you snip out the last record
at the end of the file. The current record then becomes the new "last record" in the file.

SnipRec is a high-speed DeleteRec and PACK, although it does not PACK the Virtual file,
so other DELETED records will not be removed.

While it is possible to have an index active on a virtual file, you should not use SnipRec on
an indexed virtual file. The index routines don't get called by SnipRec and the index file will
be corrupted.

 624 TOPAZ Technical Reference

__

SortVFile procedure VFILES

Purpose: Sorts the records in a virtual file based on a programmer-defined keymaker function.

Declaration: SortVFile(Order : Lstatustype);

Parameter: Order can be either of the enumerated type elements ASCENDING or DESCENDING. Any
other value will result in an error.

Notes: SortVFile uses an insertion sort method that is very fast and does not perform any disk I/O.
The keymaker function must have been specified by a prior call to Set_Vfilekey_To.

After a call to SortVFile, the current VFile mode will be set to either ASCENDING or
DESCENDING, and subsequently APPENDing new records will automatically insert them
into the VFile in the correct location.

Example: USE('mylist VIRTUAL FILE', @customer, SizeOf(customer));
.
. {fill the list with records..list will be in natural order}
.
Set_VFileKey_To(@MyKey);
SortVFile(ASCENDING);
{list will now be in sorted order}

 TOPAZ Technical Reference 625

__

Soundex function INDEX4

Purpose: Returns the soundex code for a specified string.

Declaration: Soundex(S : String) : String;

Parameters: S is the plain text string to be encoded into Soundex.

Notes: Soundex indexing in TOPAZ is handled internally by the TOPAZ indexing routines. There
is no need to use this function to create or use Soundex indexes (see MakeIndex,
SET_INDEX_TO, and SET_INDEX_ON for details). This routine is provided as a
convenience for the programmer who may wish to use Soundex for a specific application
where the TOPAZ indexing engine is not suitable. Use Soundex with caution when encoding
languages other than English!

IMPORTANT: In TOPAZ version 3.0 Soundex was implemented using a 4-digit resultant
code. This had a tendency to result in FINDs that were unexpected. Starting with TOPAZ
version 3.5, Soundex now conforms to the more conventional method of using the first
character of the key plus a 3-digit code. Your code will not have to change to take advantage
of this change. However, you will have to re-build any index that is based on a Soundex key!
The best way to do this is to erase the Soundex IND file and permit your program to create
the index file.

Example: SoundexCode := Soundex('Hello World');
{this sets SoundexCode to H643}

 626 TOPAZ Technical Reference

__

SPACE function SAYGET4

Purpose: Returns a string filled with spaces. Emulates the dBASE SPACE() function.

Declaration: SPACE(N : Integer) : String;

Parameter: N is the width of the returned string.

Example: z := SPACE(10);{fills z with 10 blank characters.}
At(1,12,name + SPACE(33));

 TOPAZ Technical Reference 627

__

SpoolArray procedure SPOOLER

Purpose: Appends characters from the user's buffer to the spooler's buffer.

Declaration: SpoolArray(var UsersBuffer; Size : Word);

Parameter: UsersBuffer is the name of the variable array where data begins, and Size is the number of
characters to place in the spooler's buffer. If Size is larger than the number of characters
available in the spooler's buffer, data will be lost.

Notes: This is a fast way to pass data to the spooler, and offers an alternative to "WriteLn(lst,
dataString)". See example below.

Example: var f : File;
textbuffer: array[1..$2000] of Byte;
s : Word;

begin
 assign(f,'PrntFile.txt'); {read in an ASCII file}
 reset(f,1); {as an untype file to a}
 Blockread(f,textbuffer,$2000,s); {buffer in RAM}
 close(f);
 SpoolArray(textbuffer,s); {pass the data to the spooler}
end;

__

SpoolFile function PRINTCOM

Purpose: Submits a file to the DOS print spooler.

Declaration: SpoolFile(Filename : PathStr) : Word;

Parameters: Filename may be fully qualified and must exist. Wildcard file specifications may not be used
as a parameter.

Notes: If successful, SpoolFile returns zero otherwise it returns a DOS error code. See
QUEUE.PAS for a complete example.

Example: if SpoolFile('MYFILE.TXT') <> 0 then
 DialogBox('Cannot spool MYFILE.TXT',ScrollPressAnyKey);

 628 TOPAZ Technical Reference

__

SpoolerReady function SPOOLER

Purpose: Returns True if the spooler is installed and the spooler buffer has sufficient room to accept a
full length string (255 characters).

Declaration: SpoolerReady : Boolean;

Example: {assumes use of the spooler}
while not eof(textfile) do
 if SpoolerReady then
 begin
 ReadLn(TextFile,s);
 WriteLn(lst, s);
 end
 else

 begin
 {Buffer is filled. Wait until spooeler is ready }

 end;

__

SpoolErrorMsg function SPOOLER

Purpose: Returns an error message corresponding to the current value of SpoolError.

Declaration: SpoolErrorMsg : String;

Notes: If no error, SpoolErrorMsg returns an empty string.

Example: {set the spooler's buffer size to 32K bytes:}
Set_Spooler_Size($8000);
{test if request was successful}
if SpoolError>0 then WriteLn(SpoolErrorMsg);

 TOPAZ Technical Reference 629

__

Squeeze procedure VIDPOP

Purpose: Captures a screen image and stores it in the Saywhat?! .SQZ file format.

Declaration: Squeeze(Col1, Row1, Col2, Row2 : Byte;
Filename : String);

Parameters: Col1, Row1 indicates the upper left corner of the window area to be captured in Pascal
coordinates. Col2, Row2 indicates the lower right corner of the window area in Pascal
coordinates. FileName is the name of the file to receive the captured image.

Notes: Use Squeeze to create a SAYWHAT?! .SQZ file from the current screen contents. Squeeze
does not respect dBASE coordinates.

The Squeeze procedure can save any size image from a 25 row by 80 column text mode
display. SAYWHAT?! versions 3.6 and earlier only read and store 24 rows or less. In order
to be compatible with these versions of SAYWHAT?!, the Squeeze procedure should capture
full screen images with coordinates of (1,2,80,25). This limitation does not apply to
SAYWHAT?! version 4.0.

 630 TOPAZ Technical Reference

__

SReal function SAYGET4

Purpose: Returns the string representation of a real number, right justified in a string of specified length,
with a specified number of decimal places. Numbers which will not fit in the specified width
will force the returned string to be of sufficient width to accommodate them.

Declaration: SReal(R : Real; W, D : Byte) : String;

Parameter: R is the real to be converted, W the width, and D the number of decimal places.

Notes: Unlike dBASE, but like Pascal, if you specify a width too short for the number, the width will
be expanded to fit the result. If country is set to Germany (with Set_Country_To), the decimal
point will be represented by a comma. See Set_Country_To.

Example: At(1,10,'Value: $'+SReal(dollars,8,2));

 TOPAZ Technical Reference 631

__

StartProgress procedure DIALOG

Purpose: Enables a progress bar when data is being processed that does not involve a SKIP.

Declaration: StartProgress(N : LongInt);

Parameter: N is the largest number of times the Progress Bar will be advanced.

Notes: The TOPAZ routines Set_Progress_On/Off allow you to display a smoothly growing Progress
Bar during scans of databases. In these instances, TOPAZ can internally manage refreshing
the bar display in step with the database file. Oftentimes, you will want to take advantage of
Progress Bars during a repetitive operation that does not involve a SKIP. In these instances,
a call to StartProgress directs TOPAZ to display a Progress Bar and informs it of the largest
number of progress "passes" the program anticipates. Calls to AdvanceProgress or
PositionProgress then direct TOPAZ to update the screen. StartProgress should not be
called if Set_Progress_On is active. See AdvanceProgress, PositionProgress,
Set_ProgressWindow_To, Set_Progress_Color_To, and Set_Progress_On/Off.

Example 1: {calculate 100 times, showing a proportional Progress Bar:}
N := 100;
StartProgress(100);
for i:=1 to N do

 begin
 ComplicatedMath;
 AdvanceProgress;
 end;
Set_Progress_Off;

Example 2: StartProgress(RecCount);
for i := 1 to RecCount do
 begin
 PositionProgress(i);
 if PEEK(1,i) = TargetValue then
 ProcessRecord(i);
 end;
Set_Progress_Off;

 632 TOPAZ Technical Reference

Example 3: { a demo of dual ("nested") progress bars }

uses crt, dbf4,dialog;

var
i : integer;

begin
 clrscr;
 for i := 1 to 25 do write(sayget4.replicate(#176,80));
 Use('MEMODEMO',nil,0);
 PushWindow(2,10,78,13);
 Set_ProgressWindow_To(2,10,78,13,2,'');
 StartProgress(1000);

 for i := 1 to 1000 do
 begin
 PositionProgress(i);
 if i mod 500 = 100 then
 begin
 Set_ProgressWindow_To(2,3,78,5,2,'Skipping...');
 Set_Progress_On;
 GoTop;
 while not deof do
 begin
 delay(75);
 Skip(1);
 end;
 Set_Progress_Off;
 { repaint the lower progress bar: }
 Set_ProgressWindow_To(2,10,78,13,2,'');
 StartProgress(1000);
 PositionProgress(i);
 end;
 end;
 Set_progress_off;
 PopWindow;
end.

 TOPAZ Technical Reference 633

__

StartSpooling procedure SPOOLER

Purpose: Instructs the TOPAZ spooler to send any characters in its buffer to the printer. Does not affect
the adding of characters to the spooler's buffer.

Declaration: StartSpooling;

Notes: StartSpooling can be used to resume sending characters to the printer after a StopSpooling
command has been issued. See StopSpooling.

__

StopSpooling procedure SPOOLER

Purpose: Instructs the TOPAZ spooler to suspend sending characters to the printer. Does not affect the
adding of characters to the spooler's buffer. Spooling can be resumed with the StartSpooling
command.

Declaration: StopSpooling;

Notes: See StartSpooling.

Example: StopSpooling;
WAIT('Press any key to resume printing...');
StartSpooling;

 634 TOPAZ Technical Reference

__

SUM function TZUTILS

Purpose: Computes and returns the sum of the specified numeric field in the currently selected
database.

Declaration: SUM(FieldName : String) : Real;

Parameters: FieldName is the dBASE name of the field to be SUMmed (not the name of the field in your
Pascal buffer).

Notes: FieldName must be a numeric field, or an error will be generated. The position of the record
pointer is not changed by SUM.

Example 1: {calculate the total of the "Amount Due" field in all records}
WriteLn('Total receivables: ',SUM('AmountDue'));

Example 2: { WRONG: }
SUM('receipts._TOTAL');

{ CORRECT: }
SUM('TOTAL'); { field name must be the dBASE field name }

 TOPAZ Technical Reference 635

__

SuspendISRs procedure TZCOMMON

Purpose: Disables all Interrupt Service Routines (ISR) associated with the timer-tick interrupt ($1C).

Declaration: SuspendISRs;

Notes: TOPAZ supports three forms of ISR routines that chain themselves into the timer-tick
interrupt ($1C): the clock, spooler, and screen saver. As a programmer, you may invoke some
or all of these routines in any order, and disable them in any order. Code in the TZCOMMON
unit exists to act as a "traffic cop" with regard to the assignment and restoration of the timer-
tick interrupt chain vectors. All of this is handled internally and is transparent to you. If you
wish to add your own ISR to the interrupt chain, however, it must be done with calls to
TOPAZ. When call ISRs are to be suspended (as, for example, when swapping to DOS), the
application can call SuspendISRs to unhook (but remember) the position of all active ISRs
in the timer-tick chain. See AddISRVector, RemoveISRVector, ResumeISRs,
ChainISRAddress, and the section "Interrupt Service Routines in TOPAZ" in the Tutorial part
of this manual.

 636 TOPAZ Technical Reference

__

SuspendProgress procedure DIALOG

Purpose: Permits the programmer to suspend the growth of the progress bar, for certain applications
where the database file is sequentially processed, but may need to SKIP or GO to other
records from time to time.

Declaration: SuspendProgress;

Notes: Normally, processing a file involves a While loop combined with SKIP(1) to process each
record in the file. In some applications, however, the program may need to "look ahead"
calling both SKIP(1) and then SKIP(-1). These extra SKIPs (or GOs), will corrupt the
Progress bar. In order to "hide" such extra processing, the program must make a call to
SuspendProgress before extra SKIPs and GOs, and call ResumeProgress afterwards.

Positioning other files, such as related databases, will have no effect on Progress bars and
therefore no call to SuspendProgress is necessary in those circumstances.

See Set_Progress_On, ResumeProgress.

Example: GoTop;
Set_Progress_On;
while not dEOF do
begin
 {look at the next record before processing the current one}
 SuspendProgress;
 SKIP(1);
 NextCustomer := customer._NAME;
 SKIP(-1);
 ResumeProgress;
 .. {process data here}
 ..
 SKIP(1);
end;
Set_Progress_Off;

 TOPAZ Technical Reference 637

__

SystemDate function TIMEDATE

Purpose: Returns the DOS date as a string of 8 or 10 characters in the format: MM/DD/YY or
MM/DD/YYYY depending on whether CENTURY is on or off, and whether another date
format has been set with SET_DATE or Set_Country_To.

Declaration: SystemDate : String10;

Example: At(1,10,'Date: '+SystemDate);
today := SystemDate;

__

SystemTime function TIMEDATE

Purpose: Returns the DOS time of day as a string of 8 characters in the format: hh:mm:ss which is
compatible with SayGet time type variables.

Declaration: SystemTime : TimeType;

Example: {wait till 2:30 pm}
repeat until SystemTime >= '14:30:00';

now := SystemTime;

 638 TOPAZ Technical Reference

__

TagFiles function PICK

Purpose: Allows the end-user to select a number of files from a list.

Declaration: TagFiles (Mask : String) : Integer;

Parameters: Mask is a wild-card file specification that tells TagFiles what files should be displayed for the
end-user to choose from.

Notes: TagFiles will return an integer that is the number of files tagged. A zero means that nothing
was tagged, or the end-user pressed <Esc>.

After a call to TagFiles, you will know how many filenames were tagged. But which files
were tagged? This is given by the function TaggedFile. Each time you call TaggedFile, it
returns the file name that was tagged in the order it was tagged.

Special returned codes. TagFiles returns 0 and negative numbers as follows:

 0 = <Esc> key pressed

-1 = <Left> cursor key pressed, and EnableLeftRightExit is True

-2 = <Right> cursor key pressed, and EnableLeftRightExit is True

-3 = Insufficient memory to run TagFiles

EnableLeftRightExit is a global boolean that is normally False. In this default state, the left
and right cursor keys have no effect in TagFiles. When this boolean is set True, the left and
right cursor keys terminate TagFiles.

It is possible to display the file size, date, and time with TagFiles when you add the clause
'SIZE&DATE' (compile and run BROWSE.PAS to see it in action. Also see the example
below).

See PickFile, Set_Tag_Color_To, Set_TagWindow_To, Set_TagOrder_On/Off, and
TaggedFile.

Example: filename := TagFiles('*.dbf SIZE&DATE');

 TOPAZ Technical Reference 639

__

TaggedFile function PICK

Purpose: Returns the names of the files that the end-user tagged during the last call to TagFiles.

Declaration: TaggedFile : String;

Notes: After the end-user has tagged a group of files, the programmer would use this routine to
access each of the files that the end-user tagged. See Set_Tag_Color_To,
Set_TagWindow_To, Set_TagOrder_On/Off, TagFiles.

Example: var i,n : Integer;

begin
 n := TagFiles('*.DBF NOEXTENSION'); {tag from a list of DBFs}
 {notice that if n = 0 (nothing tagged) this for loop will do
 nothing}
 for i := 1 to to n do
 WriteLn (TaggedFile); {then print the filenames tagged}
end;

 640 TOPAZ Technical Reference

__

TaggedItem function PICK

Purpose: Returns the ordinal value of the list item that the end-user tagged during the last call to
TagItems.

Declaration: TaggedItem : LongInt;

Notes: After the end-user has tagged a number of items from a TagItems list, this routine is used to
get the ordinal number of the items tagged, in the order tagged.

See also Set_Tag_Color_To, Set_TagOrder_On/Off,
Set_TagWindow_To, and TagItems.

Example: uses pick;
var i, n, k: integer;
{$F+}
function StateName(var i : integer) : string;
begin
 case i of
 1: StateName := 'CA';
 2: StateName := 'NY';
 3: StateName := 'IL';
 4: StateName := 'TX';
 end;
end;

begin
 n := TagItems(@StateName, 1, 4, 1);
 for i := 1 to n do
 begin
 k := TaggedItem;
 WriteLn(StateName(k));
 end;
end.

 TOPAZ Technical Reference 641

__

TagItems function PICK

Purpose: Allows the end-user to select a number of items from a list.

Declaration: TagItems (StringMakerPtr : Pointer; MinItem, MaxItem,
 StartingItem : LongInt) : Integer;

Parameters: StringMakerPtr is a pointer to a user FAR routine that returns a character string to be
displayed in the tag window. MinItem is the index of the first item in the list. MaxItem is the
index of the last item in the list. StartingItem is the index of the item that should be initially
highlighted when the list is first displayed.

Notes: TagItems works like PickList (that is, the arguments passed are the same), but TagItems will
return an integer that is the number of items tagged. A zero means that nothing was tagged,
or the end-user pressed <Esc>.

<Tab> and <Shift-Tab> will move the bar down and up, or you can use the cursor keys.

After a call to TagItems, you will know how many items were tagged. But which items were
tagged? This is given by the function TaggedItem. Each time you call TaggedItem it returns
the next "ordinal" number in the item array that was tagged.

See also Set_Tag_Color_To, Set_TagOrder_On/Off,
Set_TagWindow_To, TaggedItem, and PickList.

 642 TOPAZ Technical Reference

__

TIME function TIMEDATE

Purpose: Returns the time as a string in format 'hh:mm:ss' given a specified number of hours, or
minutes, or seconds.

Declaration: TIME(LengthOfTime : Real; Units : TimeUnits)
: TimeType;

Parameter: LengthOfTime can be either in hours, minutes, or seconds. Units is one of the pre-defined
constants "hours", "minutes", "seconds", or "ticks"

Example: ElapsedTime := TIME(12.347, hours);
{sets ElapsedTime to '12:20:49'}
{or}
ElapsedTime := TIME(12.347, minutes);
{sets ElapsedTime to '00:12:21'}

 TOPAZ Technical Reference 643

__

TimeDiff function TIMEDATE

Purpose: Returns the amount of time between two TimeType variables.

Declaration: TimeDiff(Time1, Time2 : TimeType): TimeType;

Parameter: Time1 and Time2 are formatted as 'hh:mm:ss'

Notes: Time returned is independent of the order of parameters.

Example: Arrives := '08:31:55';
Leaves := '17:10:20';
FlightTime := TimeDiff(Leaves, Arrives);
{Sets FlightTime to '08:38:25'}

__

TimeFrom function TIMEDATE

Purpose: Given numeric values of hour, minute, and second, TimeFrom returns the string
representation.

Declaration: TimeFrom(h,m,s : Integer) : TimeType;

Parameters: h,m,s are hours, minutes, and seconds respectively.

Example: Writeln(TimeFrom(12,1,0));

{ displays "12:01:00" }

 644 TOPAZ Technical Reference

__

TimePlus function TIMEDATE

Purpose: Returns a new time resulting from adding two times variables together.

Declaration: TimePlus(Time1, Time2 : TimeType): TimeType;

Parameter: Time1 and Time2 are formatted as 'hh:mm:ss'

Example: Start := '00:10:00';
Finish := TimePlus(Start, '01:00:00');

 TOPAZ Technical Reference 645

__

TRIM function SAYGET4

Purpose: Returns a copy of the parameter string trimmed of trailing spaces.

Declaration: TRIM(S : String) : String;

Parameter: S is input string.

Notes: See LTRIM.

Example: z := TRIM('abcde ');
{returns a string, z, with the value: 'abcde'}

 646 TOPAZ Technical Reference

__

UniqueFilename function DBF4

Purpose: Provides a method of generating unique names for temporary files.

Declaration: UniqueFilename : String;

Notes: Always returns a fully qualified filename on DOS 3.x systems specifying the current drive and
directory. This means that you need a string variable of at least 79 characters to accept the
maximum possible length of the returned string. An example of a filename that might be
returned by this function is:

C:\WORK\$T040002

This filename will be guaranteed unique only in the specified directory. If you need to create
a temporary file on a drive or directory other than the current one, you must first change to that
drive/directory with a call to the Turbo Pascal procedure CHDIR, call UniqueFilename, and
then change back.

Normally the underlying DOS function will create a file with a unique name and leave it open.
Due to the fact that we cannot easily use the file if it is already open, this function closes it
before returning. It is expected that your program will use the filename that is returned and
thus it is the responsibility of the calling program to delete the file should it not be utilized
after calling this function.

IMPORTANT: Filenames are returned without extensions so do not attempt to add an
extension. You should also be careful to add a dot when passing these filenames to routines
which automatically add extensions when none was specified (such as USE and
MAKEINDEX).

Example: Temp := UniqueFilename+'.';
CopyStruTo(Temp); { create temporary file }
SELECT(0);
USE(Temp,Nil,0); { open temporary file }
....
USE('',Nil,0); { close file before erasing it }
EraseFile(temp);

 TOPAZ Technical Reference 647

__

UNLOCK procedure DBF4/NET

Purpose: Releases any kind of database lock which is owned by the current work-station. Acts on the
database in the currently selected work area.

Declaration: UNLOCK;

Notes: Calling UNLOCK when no lock is active does not generate an error. See FLOCK, ALOCK,
RLOCK.

 648 TOPAZ Technical Reference

__

UpdateBrowseRow procedure BROWSE4

Purpose: Intended for use by a user-defined calculation procedure active during a BROWSE session.
Causes BROWSE to redisplay the current record.

Declaration: UpdateBrowseRow;

Notes: See BROWSE, Set_Browse_Calc_To, BrowseField,
BrowseEdit, UpDateBrowseScreen.

Example: See the example in Set_Browse_Calc_To.

 TOPAZ Technical Reference 649

__

UpdateBrowseScreen procedure BROWSE4

Purpose: Causes BROWSE to repaint the Browse window and data.

Declaration: UpdateBrowseScreen;

Notes: Normally BROWSE checks after a call to the user's Browse_Calc procedure for any change
in the database that requires repainting the screen. BROWSE can automatically detect a
change in record number or record count, a change in the primary index key value, or a change
in the Delete flag if SET_DELETED_ON. BROWSE cannot detect if the "calc" routine edited
non-key fields of the current or other records. UpdateBrowseScreen permits the programmer
to force BROWSE to redisplay data in its window. See BROWSE, UpDateBrowseRow,
Set_Browse_Calc_To.

 650 TOPAZ Technical Reference

__

UPPER function SAYGET4

Purpose: Returns a copy of the string parameter converted to uppercase. Only the characters a..z, lower
case umlaut characters, and lower case accented characters are affected.

Declaration: UPPER(S : String) : String;

Parameter: S is a string variable, literal, or concatenation.

Example: z := UPPER(name);

__

UpperCase procedure SAYGET4

Purpose: Converts a string to upper case. Only the characters a..z, lower case umlaut characters, and
lower case accented characters are affected.

Declaration: UpperCase(var S : String);

Parameter: S is the input string variable. Cannot be a literal or a concatenation.

Notes: See UPPER function.

Example: UpperCase(last_name);

 TOPAZ Technical Reference 651

__

USE procedure DBF4

Purpose: Opens (or closes) a dBASE DBF file for input and output. Emulates the dBASE USE
command. Up to 25 database files can be open.

Declaration: USE(Filename : String; BufferPtr : Pointer; Size : Word);

Parameters: Filename (with optional path) is the name of the DBF file to open. The file must exist or the
global variable DBFError will return a non-zero result. Filenames may consist of full path
names and do not require an extension if the file to be opened has an extension of DBF.
Another extension may be used if specified. The Filename parameter may contain an ALIAS
clause, which has the same effect as SET_ALIAS_TO. See example 2 below.

BufferPtr is an optional pointer to a Pascal data structure that matches the dBASE data
structure [i.e., an area in memory that TOPAZ writes (reads) the current dBASE record to
(from)]. Field names in the user field declaration need not match those in the dBASE file. If
BufferPtr is NIL, the dBASE file can be opened without reference to a Pascal structure, and
TOPAZ will allocate its own internal buffer. This permits the programmer to open DBF files
of unknown structure and use the intermediate file routines (such as FieldName, FieldLen,
etc.) and most of the high level routines (e.g., BROWSE) very easily. See Example 3 below.

Size is the size in bytes of the data structure pointed to by BufferPtr (or zero, if BufferPtr is
NIL). The use of the Pascal SizeOf function is strongly recommended to avoid programming
errors. Passing the size parameter allows USE to confirm that the buffer is of sufficient size
to hold the data from one record in the file. An error is generated if the size of one record in
the file does not match the size parameter. Thus, if the structure of the file is changed without
a corresponding modification to your TOPAZ program, this differential will be detected.
Simple field name changes to a database will not normally affect the operation of your TOPAZ
program.

USE also allows "virtual files", i.e. linked lists, to be opened, with the optional clause
VIRTUAL FILE or LINKED LIST. Virtual files may be opened in any of the following
modes, also specified by clauses:

VIRTUAL FILE TO EMS
LINKED LIST TO EXT
FIFO TO HEAP
LIFO TO BIGGEST
INSERTION

The syntax can be identical to opening a physical file:

 652 TOPAZ Technical Reference

USE('*MyList* VIRTUAL FILE',@Item, SizeOf(Item));

Note that linked-lists names and aliases do not have to be valid DOS names, since no physical
file is being opened. The use of asterisks as illustrated above is a convenient way to remind
yourself that the "file" is really a linked list. The data structure of the item in the linked list is
entirely up to you. If you specify a non-zero size, each item must have a fixed number of bytes.
If the item size is zero, however, as in

USE('*MyList* VIRTUAL FILE',@Item, 0);

then "files" of variable length records can be built.

See example 5 below, and the section "Virtual Files and Linked Lists" in the Tutorial part of
this manual.

The database can be closed by calling USE with null arguments: USE('',nil,0). Remember that
just as in dBASE, you must first SELECT the database area you wish to close. If a database
is already in use in the currently selected area, calling USE will first close the open database
before opening the new one.

Notes: It is recommended that you use the utility MAKEPAS.EXE to create the Pascal data structure
from the existing dBASE file to be processed, since the structure MUST match that of the
DBF file. To make an empty dBASE file without dBASE, use TOPAZ's CREATE.EXE
utility.

See SELECT, CloseDataBases.

Example 1: {normal file open:}
USE('sample.DBF',@samplerec, sizeof(samplerec));
{the DBF extension is optional}
{Always use the SizeOf() function for accuracy}

Example 2: {open a database with an alias name:}
USE('x0303 ALIAS INVENTORY', @inventry, SizeOf(inventry));

Example 3: {open a database with unknown structure:}
USE('mystery.dbf', NIL, 0);
{although the structure is not known, the file can be BROWSEd:}
BROWSE('');
{the intermediate level commands can be used to determine the structure
and access the data:}
for i:=1 to FieldCount do WriteLn(Field(i));

Example 4: USE('', nil, 0); {Closes the current database}

Example 5: USE('*MyList* VIRTUAL FILE', @MyList, SizeOf(MyList);
{opens a virtual file with alias *MyList* (virtual files need not have
valid DOS filenames)}

 TOPAZ Technical Reference 653

__

ValidDate function TIMEDATE

Purpose: Returns True if the passed string represents a valid date.

Declaration: ValidDate(Date : String10) : Boolean;

Parameter: Date is the date string to be tested.

Notes: ValidDate expects a string of length 8 when CENTURY is SET OFF, and a string of length
10 when CENTURY is SET ON. ValidDate should be used to establish that a date is valid,
before passing a date variable to TIMEDATE routines such as DatePlus. Dates returned by
any TOPAZ TIMEDATE function will always be valid and need not be tested.

Examples: WriteLn(ValidDate('//1989Z'));
{returns FALSE, as the parameter is unintelligible}

WriteLn(ValidDate('13/32/89'));
{returns FALSE, as no such month or day exists}

WriteLn(ValidDate('02/29/89'));
{returns FALSE, as 1989 was not a leap year}

WriteLn(ValidDate('12/25/89'));
{returns TRUE, as 12/25/89 is perfectly valid}

WriteLn(ValidDate(SystemDate));
{unnecessary, as SystemDate always returns a valid result}

 654 TOPAZ Technical Reference

__

ValidFilename function DBF4

Purpose: Returns True if the filename passed is a valid DOS filename.

Declaration: ValidFilename(Name : String) : Boolean;

Parameter: Name is any candidate filename.

Notes: Name may or may not be an existing file. Similarly, Name may or may not be fully qualified.
ValidFilename returns True only if it is possible to open a file of Name. ValidFilename is
designed to used to establish the validity of a filename input by the end-user.

Examples: WriteLn(ValidFilename('? &&\\.EXT'));
{output: FALSE, as name passed is nonsense}

WriteLn(ValidFileName('\UTILS\EDITOR.EXE');
{output: TRUE}

repeat
SayGet(5,5,'File to create: ',fn,_S,12,0);
ReadGets;
if not ValidFilename(fn) then
 begin
 At(5,6,fn+' is not a valid name!');
 WAIT('');
 end;
until ValidFilename(fn);
{check filename entered by end-user before going on}

 TOPAZ Technical Reference 655

__

VideoCard function VIDPOP

Purpose: Returns the video card type.

Declaration: VideoCard : Word;

Notes: The VideoCard routine examines the current video card configuration and returns a Word
that indicates the current setup. The programmer would use this in order to control the color
settings, etc. at execution time. See ISCOLOR for a simpler method of establishing whether
the system is color or monochrome. VideoCard returns the following possible values:

MonoCard = $0100; { standard monochrome cards }
HercMono = $0200; { Hercules monochrome cards }
HGCPLUS = $0201; { HGCPLUS (monochrome) }
InColor = $0202; { Hercules InColor card }
CGACard = $0300; { stand.Color Graphics Cards}
EGAColor = $0400; { EGA w/EGA color monitor }
EGAMono = $0401; { EGA w/Monochrome monitor }
EGACGA = $0403; { EGA w/CGA monitor }
VGAColor = $0500; { VGA w/VGA color monitor }
VGAMono = $0501; { VGA w/VGA monochr.monitor }
MCGAColor = $0600; { MCGA w/Color monitor }
MCGAMono = $0601; { MCGA w/monochrome monitor }

Example: case Hi(VideoCard) of {report the video card to the user}
 1 : WriteLn('Monochrome card');
 2 : begin
 WriteLn('Hercules card');

 case Lo(VideoCard) of
 1 : WriteLn('HGC + card');
 2 : WriteLn('Hercules InColor card');
 end; { end case }
end;

 3 : WriteLn('CGA card');
 4 : WriteLn('EGA card');
 5..6 : begin

 case hi(VideoCard) of
 5 : WriteLn('VGA card');
 6 : WriteLn('MCGA card');
 end; { end case }
 case Lo(VideoCard) of
 0 : WriteLn('color monitor');
 1 : WriteLn('monochrome monitor');
 end; { end case }
 end;

 end; { end case }

 656 TOPAZ Technical Reference

__

VideoMode function VIDPOP

Purpose: Returns the numeric value of the current video mode as determined by DOS. Monochrome
= 7 and all other modes are color or color graphics.

Declaration: VideoMode : Byte;

Example: if VideoMode = 7 then
 SET_COLOR_TO(LightGray, Black, Black,LightGray)
else
 SET_COLOR_TO(Cyan, Blue, Yellow, Black);

 TOPAZ Technical Reference 657

__

ViewQueue procedure PRINTCOM

Purpose: Allows viewing the filenames in the print queue via a tag list and tagged files will be removed
from the print queue.

Declaration: ViewQueue;

Notes: If the print queue is empty a DialogBox will inform the user. If PRINT.COM is not installed
the user will also be notified via a DialogBox. See QUEUE.PAS for a complete example.

 658 TOPAZ Technical Reference

__

VolumeLabel function TZUTILS

Purpose: Returns the volume label on a specified drive.

Declaration: VolumeLabel(Drive : Char) : String;

Parameter: Drive is the drive letter ('A','B',...). A blank character refers to the current drive.

Notes: If the drive does not exist or is not ready, a TOPAZ error condition will result. Therefore, your
program should check that the Drive specified is a valid drive.

Example: Writeln(VolumeLabel('C')); {displays the volume label on the C drive}
Writeln(VolumeLabel(' ')); {displays the volume label on the current

drive}

 TOPAZ Technical Reference 659

__

WAIT procedure SAYGET4

Purpose: Optionally prints a message on the screen and then suspends program execution until any key
is pressed. Emulates the dBASE WAIT procedure.

Declaration: WAIT(Prompt : String);

Parameter: Prompt is a user-defined message.

Notes: Unlike the dBASE WAIT, WAIT does not automatically precede the prompt with a carriage
return and line feed. See Example 3 to more closely emulate dBASE. See WAIT_TO to
recover the key that was pressed.

Example 1: WAIT('Press any key to continue...');

Example 2: {wait for any keystroke with no prompt}
WAIT('');

Example 3: {exact emulation of dBASE WAIT}
WAIT(#10#13'Press any key to continue...');

__

WAIT_TO procedure SAYGET4

Purpose: Suspends program execution until any key is pressed. Key is returned to calling program.
Same as WAIT (above) except that the keystroke is returned.

Declaration: WAIT_TO(Prompt : String; var C : Char);

Parameter: Prompt is a user-defined message, C is the key pressed.

Notes: See WAIT.

Example: WAIT_TO('Enter choice: ',choice); {"choice" will be the key pressed}

 660 TOPAZ Technical Reference

__

WDialogBox function TZCOMMON (W)

Purpose: Creates and displays a Dialog Box identical to WINPROCS.MessageBox() except that string
parameters are used instead of PChar parameters (Windows version only).

Declaration: WDialogBox(Message, Heading : String;
Buttons : Word): Word;

Parameters: Message is the text to be displayed, Heading displays the box heading, and Buttons is a bit
mask specifying the desired icon and choice buttons for the dialog.

Example: if DialogBox('Pack the file?', { message }
 'Pack File', { box heading }
 mb_YesNo or mb_IconExclamation) = id_Yes then Pack;

 TOPAZ Technical Reference 661

__

WhichArea function DBF4

Purpose: Returns the number of the work area which contains a database with a matching alias name.

Declaration: WhichArea(AliasName : String10) : Byte;

Parameter: AliasName must contain an alias of an existing and open database. The case of the parameter
string is not significant.

Notes: This function is similar to the SelectAlias procedure except that instead of changing the
current work area, it returns the proper work area number.

Example 1: {Locate and select the workarea for the INVOICES.DBF (equivalent to
SelectAlias('INVOICES') }
SELECT(WhichArea('INVOICES'));

Example 2: SELECT(0);
USE('INVOICES',@Invoices,SizeOf(Invoices));
SELECT(0);
USE('*INVOICES* VIRTUAL FILE',@VINVOICES,Sizeof(VINVOICES));
CopyStruFrom(WhichArea('INVOICES'));

 662 TOPAZ Technical Reference

__

WReadMemo function MEMO (W)

Purpose: Reads and displays the contents of a database memo field (Windows version only).

Declaration: WReadMemo(StartMemoBlock : LongInt; Dest : Pointer;
MaxChars, WrapWidth : Word) : Boolean;

Parameters: StartMemoBlock should be a database memo field containing either zero or a valid memo file
block number. Dest should be a pointer to a buffer of sufficient size to hold the contents of the
memo. MaxChars should be set to the size of the destination buffer. WrapWidth should be set
to the desired number of characters between line delimiters (CR/LF). If set to zero then the
memo will be delivered without any soft line breaks allowing the memo to be word wrapped
by Windows appropriate to the size of the edit control.

Example: WReadMemo(TZWDEMO._NOTES, @Buffer^.Notes, 4096, 0);

 TOPAZ Technical Reference 663

__

WWriteMemo function MEMO (W)

Purpose: Creates a new memo (Windows version only).

Declaration: WWriteMemo(AsciiBuffer: PChar; Width: Byte): Longint;

Parameters: AsciiBuffer should be an ascii string containing the memo data to be saved. This is typically
the data returned by a multi-line edit control when the transfer method is used. Width is the
width of the edit window in characters or the desired line width when storing the memo. Width
should be in the range of about 20 to 80. This will insure compatibility with dBASE and text
mode TOPAZ programs.

Notes: Calling WWriteMemo causes a new memo to be appended to the memo file and returns the
starting block number. This number must be saved in the memo field and either APPEND or
REPLACE must be called or else the memo will be lost.

Example: if StrComp(SaveBuffer^.Notes, Buffer^.Notes) <> 0 then
{ memo was modified }

 TZWDEMO._NOTES := WWriteMemo(Buffer^.Notes,
MemoWidth div AvgChar);

 664 TOPAZ Technical Reference

__

YEAR function TIMEDATE

Purpose: Returns the numeric year from a string date.

Declaration: YEAR(Date : String10) : Word;

Parameters: Date can be formatted either as 'MM/DD/YY' or 'MM/DD/YYYY' (if date format is USA,

or COUNTRY is SET to American).

Notes: If the supplied date has a two digit year, YEAR will return a number based on those digits

(i.e. without a century). If the supplied date has a four digit year, YEAR will return a number
that includes the century. See SET_DATE and Set_Country_To for other date formats.

Example: x := YEAR('07/04/76'); {sets x to 76}
x := YEAR('07/04/1776'); {sets x to 1776}

 TOPAZ Technical Reference 665

__

ZAP procedure DBF4

Purpose: Empties the current database of all records. ZAP is equivalent to deleting all records and then
PACKing. ZAP is accomplished by truncating the file, therefore the data existing in the
database prior to ZAPping is not recoverable. Emulates the dBASE ZAP command.

Declaration: ZAP;

Notes: ZAP automatically reindexes any open index files, and clears the memo file if one exists.
Multi-user applications must open the database file EXCLUSIVE before ZAPping. See also
SET_SAFETY_ON/OFF, USE, and
SET_EXCLUSIVE_ON.

Example 1: {single-user example}
SayGet(10,10,'Empty the file? ',Yes,_L,1,0);
ReadGets;
if Yes then ZAP;

Example 2: { multi-user example }
{ file must be openend EXCLUSIVE }
USE('myfile EXCLUSIVE', NIL, 0);
ZAP;

 666 TOPAZ Technical Reference

 TOPAZ Appendix 667

A P P E N D I X

 668 TOPAZ Appendix

 TOPAZ Appendix 669

GLOBAL TYPES, CONSTANTS, VARIABLES
AND DEFAULT SETTINGS

NOTE: For the latest information refer to the header files on the distribution disks.

SAYGET4, TZCOMMON, TIMEDATE
Common predefined constants: Date Formats and Country Codes.

const
American = 0; USA = 0;
Ansi = 1;
British = 2; Britain = 2;
Italian = 3; Italy = 3;
French = 4; France = 4;
German = 5; Germany = 5;
Spanish = 6; Spain = 6;
FrenchCanadian = 7; Quebec = 7;
Russian = 8; Russia = 8;

BROWSE4, DIALOG, PICK, SAYGET4, TIMEDATE, DBFEDIT
Common predefined constants that affect LineStyle.

const
NoLine = 0;
SingleLine = 1;
DoubleLine = 2;
SolidLine = 3;
SingleTopDoubleSide = 4;
DoubleTopSingleSide = 5;
Shadow = 128;
Explode = 64;

BROWSE4, DBFEDIT, DIALOG, PICK
Window heading constant that replaces an optional heading string.

const NoHeader = '';

TZPRINT, REPORT4
Common predefined constants representing frequently used printer control codes for a variety of commonly
encountered printers.

predefined IBM/Epson printer codes:

const
CompressedPrint = #15;
NormalPrint = #18;

 670 TOPAZ Appendix

TZPRINT, REPORT4 (continued...)

predefined Epson LX-800 codes:

const
EpsonPica = #27'!'#0;
EpsonElite = #27'!'#1;
EpsonCompressed = #27'!'#4;
EpsonDoubleWidth = #27'!'#32;
EpsonBold = #27'!'#8;
EpsonItalics = #27'!'#64;
EpsonUnderLine = #27'!'#128;
EpsonReset = #27'@';

predefined HP Laser Jet Series II codes:

const
LJPortrait = #27'&l0O';
LJLandscape = #27'&l1O';
LJLinePrinter = #27'(s0T'#27'(10U'#27'(s0P'#27'(s16.7H';
LJCourier = #27'(s3T'#27'(10U'#27'(s0P'#27'(s10H'#27'(s0B';
LJReset = #27'E';
LJCourierBold = #27'(s3T'#27'(10U'#27'(s0P'#27'(s10H'#27'(s3B';
LJHelvetica = #27'(s4T'#27'(0U'#27'(s1P'#27'(s14.4V';

predefined IBM Pro Printer II codes:

const
ProPrinterNormal = '';
ProPrinterCompressed = '';
ProPrinterDoubleWidth = '';
ProPrinterBold = '';
ProPrinterReset = '';

predefined Okidata 190/2410 codes:

const
OkidataPica = #27':';
OkidataElite = #18;
OkidataCompressed = #15;
OkidataDoubleWidthOn = #27'W1';
OkidataDoubleWidthOff = #27'W0';
OkidataBoldOn = #27'G';
OkidataBoldOff = #27'H';
OkidataUnderlineOn = #27'-'#1;
OkidataUnderLineOff = #27'-'#0;
OkidataReset = #24;

 TOPAZ Appendix 671

TZPRINT, REPORT4 (continued...)

predefined Toshiba P351SX codes:

const
ToshibaElite = #27#31#12;
ToshibaPica = #27#31#10;
ToshibaCompressedOn = #27'[';
ToshibaCompressedOff = #27']';
ToshibaDoubleWidth = #27'!';
ToshibaBoldOn = #27'K';
ToshibaBoldOff = #27'M';
ToshibaItalicsOn = #27#18;
ToshibaItalicsOff = #27#20;
ToshibaUnderLineOn = #27'I';
ToshibaUnderLineOff = #27'J';
ToshibaReset = #27#13'P';

predefined Citizen 120-D codes:

const
CitizenElite = #27'M';
CitizenPica = #27'P';
CitizenCompressed = #15;
CitizenBoldOn = #27'G';
CitizenBoldOff = #27'H';
CitizenReverseOn = #27'~1';
CitizenReverseOff = #27'~0';
CitizenUnderlineOn = #27'-'#1;
CitizenUnderLineOff = #27'-'#0;
CitizenReset = #27'@';

predefined Panasonic KX-P1180 codes:

PanasonicPica = #27'P';
PanasonicElite = #27'M';
PanasonicCompressedOn = #15;
PanasonicCompressedOff = #18;
PanasonicBoldOn = #27'G';
PanasonicBoldOff = #27'H';
PanasonicDoubleWidthOn = #27'W'#1;
PanasonicDoubleWidthOff = #27'W'#0;
PanasonicUnderLineOn = #27'-'#1;
PanasonicUnderLineOff = #27'-'#0;

BROWSE4

var
BrowseFieldSeparator : Char; default = '-' (dash)
BrowseVerticalChar : Char; default = '*' (vertical bar)
BrowseVerticalColor : Byte; default = DarkGray on Black
BrowseExitKeys : Set of Char; default = [#13, ESC]
ExitBrowse : Boolean; default = False

 672 TOPAZ Appendix

DBF4

type
string10 = string[10];
dRec = ^DataRecord; pointer to data record on heap
DataRecord = array[0..4000] of Byte; Maximum record size of 4000 bytes +

deleted flag = 4001 bytes

FieldRecord = record
Name : Fldname; field name
Typ : Char; field data type
Len : Byte; field length including any decimal point and

decimal places
Dec : Byte; number of decimal places for numeric fields
Off : Word; field offset calculated at runtime

end;

dFields = ^FieldArray;
FieldArray = array[1..128] of FieldRecord; Max 128 fields per record
StatusType = (NotOpen, NotUpdated, Updated, Appended);
HeaderPrologType = array[0..31] of Byte;
DataStorageType = (Disk, Heap, Ems, Ext, Best, Biggest);
LStatusType = (FIFO, LIFO, INSERTION);

dbfRecord = record
FileName : String[64];
HeadProlog : HeaderPrologType;
HasMemo : Boolean;
HeadLen : Integer;
RecLen : Word;
NumFields : Byte;
Fields : dFields;
dStatus : StatusType;
LastUpdate : String[8];
CurRecord : dRec;
NumRecs : LongInt;
CurRecNo : LongInt;
EOFile : Boolean;
BOFile : Boolean;
Fmode : Word; {File Mode}

 case LLSwitch of
 False :(dFile : file); { Database file handle }
 True :(LLHeadPtr : Pointer; { Virtual File management variables }
 LLTailPtr : Pointer;
 CurrentPtr : Pointer;
 LStatus : LStatusType;
 TargetRecNo : LongInt;
 Action : LLActionType;
 DataLoc : DataStorageType;
 Spare : Array [1..13] of byte;
 LinkedList : Boolean);

 end; {of CASE}
end; {of RECORD}

 TOPAZ Appendix 673

DBF4 (continued...)

var
ExitSearch : Boolean; set to signal the end of a Search

DIALOG

const
StayOn : Char = #0; Tells DialogBox to wait for a key press
StayOnNoCursor : Char = #1; same as StayOn, but with no cursor

var
AddProgressScale : Boolean; add a scale to the progress window bar
ProgressChar : Char; initially '%'
MenuMargin : Byte; initially 0
MenuSeparatorChar : Char; initially the semi-colon
DialogRow : Byte; top row of the DialogBox just displayed

EDIT

const
D e f a u l t N a m e =

'NONAME
. T X T
';

DefaultExt : String[3]= 'TXT';
WordWrapWidth : Byte = 80;
SoftCR : String [1] = #174;
NormalText = 1;
BlockTExt = 2;
Frame = 3;
Status = 4;
DialogFrame = 5;
DialogText = 6;
PickText = 7;
PickBar = 8;
HelpFrame = 9;
HelpText = 10;
_NoFunc = 0;
_BackSp = 1;
_BlockOff = 2;
_ReadBlock = 3;
_WriteBlock = 4;
_CopyBlock = 5;
_MoveBlock = 6;
_DelBlock = 7;
_PrintBlock = 8;
_QuickSave = 9;
_ExitSave = 10;
_QuitNoSave = 11;
_SearchCont = 12;
_Search = 14;
_Replace = 15;
_FindBlockB = 16;
_FindBlockE = 17;
_DelWord = 18;
_DelLine = 19;

 674 TOPAZ Appendix

_Tab = 20;
_Enter = 21;
_InsLine = 22;
_Escape = 23;
_BackTab = 24;
_Help = 25;
_SetHelp = 26;
_SaveFile = 27;
_SetDir = 28;
_LoadFile = 29;
_SetExt = 30;
_Merge = 31;
_SetMerge = 32;
_Print = 34;
_SetPrint = 35;
_GoToLn = 36;
_Resize = 37;
_Zap = 38;
_Home = 40;
_PgDown = 41;
_CurLeft = 42;
_CurRight = 43;
_CurDown = 44;
_CurUp = 45;
_PgUp = 46;
_EndLn = 47;
_Ins = 48;
_Del = 49;
_PrevWord = 50;
_NextWord = 51;
_EndFile = 52;

EDIT (continued...)

const {continued...}

_BeginFile = 53; _CtrChrs = 59;
_BlockBeg = 54; _SetWidth = 60;
_BlockEnd = 55; _Reformat = 61;
_End = 56; _ToggleWrap = 62;
_QuickExit = 58; _UserDefined = 255;

var

KeyMap : array [^A..^[, ^@..^[] of Byte;
FKeyMap : array [128..368] of Byte;
EditorResult : Byte;
Edit_Output : PathStr;

INDEX4

var Found : Boolean;

MEMO

 TOPAZ Appendix 675

const
MemoError : Byte = 0;
NormalText = 1;
BlockTExt = 2;
Frame = 3;
Status = 4;
DialogFrame = 5;
DialogText = 6;
PickText = 7;
PickBar = 8;
HelpFrame = 9;
HelpText = 10;

PICK

var
PickFileResult : SearchRec;
EnableLeftRightExit : Boolean; default = False
PickSaveWindow : Boolean; default = True, allows pick to save and restore the

screen
TagFileResult : SearchRec;

 676 TOPAZ Appendix

TZPRINT

var
Alternate : Text; Alternate device used in Write statements
PrintDevice : Word;
PrintFramingChar : Char; controls the AtPrint framing buffer

REPORT4

var
ReportColumnString : String[9];
ReportColumnWidth : Byte;
ContinuationString : ARRAY[1..128] of Boolean; users func can use this to

start another long string
ReportResult : Integer; 0=normal, 1=end-user pressed <Esc>

SAYGET4

const MaxGets = 128; { Maximum number of "GETS" allowed per ReadGets}
ShadowColor: Byte= 8;

global function key constants for use with Set_FKey_To()

<F1>..<F10>

F1 = #59; F2 = #60; F3 = #61; F4 = #62; F5 = #63;
F6 = #64; F7 = #65; F8 = #66; F9 = #67; F10 = #68;

<Shift-F1>..<Shift-F10>

SF1 = #84; SF2 = #85; SF3 = #86; SF4 = #87; SF5 = #88;
SF6 = #89; SF7 = #90; SF8 = #91; SF9 = #92; SF10 = #93;

<Ctrl-F1>..<Ctrl-F10>

CF1 = #94; CF2 = #95; CF3 = #96; CF4 = #97; CF5 = #98;
CF6 = #99; CF7 = #100; CF8 = #101; CF9 = #102; CF10 = #103;

<Alt-F1>..<Alt-F10>

AF1 = #104; AF2 = #105; AF3 = #106; AF4 = #107; AF5 = #108;
AF6 = #109; AF7 = #110; AF8 = #111; AF9 = #112; AF10 = #113;

 TOPAZ Appendix 677

SAYGET4 (continued..)

type
Language = (pascal, dbase);
ExplodeModeType = (Always, Never, Context);

VarTypes = (_l, _b, _c, _d, _t, _r, _s, _w, _i, _si, _li, _m);
{Logical, Byte, Char, Date, Time, Real, String, Word, Integer,
ShortInt, LongInt, Memo}

String1 = String[1];
String14 = String[14];

var
AlphaSet, default = ['a'..'z', 'A'..'Z',

#128..#154, #160..#167]
BooleanSet, default =

['Y','N','T','F','y','n','t','f']
TrueSet, default = ['Y', 'T']
FalseSet, default = ['N', ' ', 'F']
NumberSet, default = ['0'..'9']
WatchKeys, default = [] (empty set)
UserSet : Set of Char; default = [] (empty set)
UserChar : Char; default = |
DecimalSymbol : Char; default = '.'
EditResult : ShortInt; contains status of edits upon exit
SpreadSheetMode : Boolean; default = False
SGBuffer : ^String; default = NIL
SGFieldCode : Byte; contains code from current field
SGFieldOK : Boolean; used to indicate field contents are valid
SGRepaint : Boolean; default = False
SGNextField : Byte; default = 0
ExitRead : Boolean; default = False
ExitField : Boolean; default = False
InsertMode : Boolean; default = False
LeftDelimiter : String[1]; default = '' (empty string)
RightDelimiter : String[1]; default = '' (empty string)
ClearBoxes : Boolean; default = True
ExplodeRate : Byte; default = 20
ExplodeMode : ExplodeModeType;default = Context
BaseOfScreen : Word; Base address of video memory, for use

by programs that run under DesqView

SPOOLER

var SpoolError : Byte;

 678 TOPAZ Appendix

TIMEDATE

type
TimeUnits = (Hours, Minutes, Seconds, Ticks);
TimeType = String[8];
String4 = String[4];
String10 = String[10];
Yeartype = -4713..19999;
Monthtype = 1..12;
Daytype = 1..31;

var
TimeError : Integer;
BiosTimerTicks : LongInt Absolute $40:$6C;

TZCOMMON

const

MaxWorkAreas = 25;
AbsoluteMaxWorkAreas = 26; CAUTION !! for internal TOPAZ use only !!
MaxOrder = 16;
Wrap : Boolean = false; { if set to TRUE before calling EditMemo, EditText,

or DisplayMemo will force word wrap on}

Multi-User constants

MultiUserVersion = true; this const only present in Multi-User TOPAZ units
SingleUserVersion = true; this const only present in Single-User TOPAZ units

Error codes returned in DBFError

NotDbfFile = 210; first byte was not a $3, $83, or $2 (dBASE II)
InvalidField = 211; invalid field type was found in file header
OutOfRange = 212; tried to read a record beyond end-of-file
PartialRead = 213; only a partial record was read from disk
AlreadyInUse = 214; DBF already open in another workarea
NotInUse = 215; no database open in current work area
BadSize = 216; user data structure wrong size
InsufficientMemory = 217; not enough memory
NilPointer = 218; improper NIL pointer passed as a parameter
DupeHandleError = 219; unable to flush buffer of current file
InvalidParameter = 220; e.g. select(22)
IndexNotOpen = 221; called routine requires an index
CorruptedFile = 222; corruption detected
WrongVersion = 223; index file is wrong Topaz version
CyclicalRelation = 224; database relation caused parent to move

 TOPAZ Appendix 679

TZCOMMON (continued..)

Error codes returned by the Virtual Files unit

InvalidLLOption = 1100; some DBF commands are not valid for linked lists
LLUnitNotThere = 1101; the VFILES unit not linked in
MemoryManagement = 1102; extended / expanded memory management error.

Error codes returned in Multi-User TOPAZ

ExclusiveUseRequired = 225; Pack, Zap and file indexing require that the file be
opened "EXCLUSIVE"

FileNotLocked = 1201; file must be locked for certain operations
RecordNotLocked = 1200; must lock records for certain operations

Error codes returned in TimeError

NoColon = 239; colons missing from time string
BadChar = 240; invalid character found in time string
InvalidTime = 241; time string is invalid
NegativeTime = 242; time calculation results in a negative value
DifferenceNegative = 243; time calculation results in a negative value
InternalError = 254; Topaz internal error occurred

type
String3 = String [3];

DataDefinitionType = record
Column : Byte;
Prompt : String [80];
Picture : String [80];
LoRange : String [14];
HiRange : String [14];
BlankField : Boolean;
NoEdit : Boolean;
ValidatePtr : Pointer;
AutoHelpPtr : Pointer;
PromptFG : Byte;
PromptBG : Byte;
DBFAlias : String [10];
FieldName : String [10];
Row : Byte;
Required : Boolean;
VirtualField : String [80];

 end;

var
DataDefinition : ^DataDefintionType;
Selected : 1..25; number of currently selected workarea
DBFError : Word; set to one of the above values on

error
ErrorMessage : String; error message when DBFError <> 0

 680 TOPAZ Appendix

TZCOMMON (continued..)

var {continued...)

AutoHalt : Boolean; default = True
CenturyOn : Boolean; default = False
Safety_On : Boolean; default = False
IgnoreDel : Boolean; default = False
PrinterStatus : Pointer; points to Printer status function
LastKey : Char; contains the last keystroke ending a

ReadGets session
MemoryAtDos : LongInt; Turbo Pascal 6.O only: Contains the

amount of memory in bytes available
before launching the application.

DateFormat : Byte; American..Spanish, default = American
Country : Byte; USA..Spain, default = USA
dBASEOrder : Boolean; default = False
TalkEnabled : Boolean; default = False
Odometer : Boolean; default = False
SelectedColor : Byte; default = 0
Hunt : Boolean; default = True, enable/disable hunting

in PickLists
EscapeEnabled : Boolean; default = False

 NextKey : Char; contains the key that was pressed,
when Keypressed returns True. If
Keypressed returns False, NextKey is
undefined. This is useful to find out
what key was pressed, but don't want
to remove it from the keyboard buffer
by calling ReadKey

 NextScanCode : Byte; see above note
ScoreRow : Byte; default = 1
ProgressPtr : Pointer; default = NIL, for progress bars
Repaint : Boolean; default = True
BooleanSaySet : Array[0..1] of Char; default = ['N','Y']
Console_On : Boolean; default = False
AlternateName : String; filename for alternate output
Alternate_On : Boolean; default = False
Print_On : Boolean; default = False
Alternate_Open : Boolean; default = False
NumberOfParallelPorts : Byte; set by initialization code
NumberofSerialPorts : Byte; set by initialization code
NumberOfFloppyDrives : Byte; set by initialization code
TotalMemory : Word; set by initialization code
SDosVersion : String[7]; set by initialization code
FileModeOverride : Byte; default = $FF

{ Databases, memo files, and index files may be opened read-only by setting the global
byte:

 FileModeOverride := 0;

When this value <> $FF all routines that open files, and their use of the file can be
read-only, will use the value in FileModeOverride as the FileMode value. Routines such
as CopyTo and SET_ALTERNATE_TO, which MUST create or append a file, will ignore the
value of FileModeOverride and use a file mode of 2. CopyFile will use FileModeOverride
for the source file (but not the destination file) thus allowing copying files which
are open by other users. If the value of FileModeOverride was a read-only mode when
you opened a database, operations such as Replace or AppendFrom will generate
appropriate errors }

 TOPAZ Appendix 681

Multi-User variables

MultiUser : Boolean; { May be used by programs to control how files are
accessed based on the presence of a Network. Set to
FALSE in the Single-User TOPAZ }

Mouse Support

const
{Default values:}
TOPAZMouseEnabled : Boolean = True;
MouseDriverPresent : Boolean = False;
MouseIsVisible : Boolean = False;
AutoMousePlacement : Boolean = True;
DoubleClickThreshold : Word = 5;
LeftHandedMouse : Boolean = False;

{ Constants used to construct bit masks,
"or" them together to combine them: }

LeftButtonDown = 2;
LeftButtonReleased = 4;
RightButtonDown = 8;
RightButtonReleased = 16;
CenterButtonDown = 32;
CenterButtonReleased = 64;

ReservedID = -32767; { target id number }

VFILES

const
ExtpageSize = 16384; size of an Extended memory page
LinkSize = 14; size of linkage nodes for each VFile record

var
EmsInstalled : Boolean; true if EMS memory is available
ExtInstalled : Boolean; true if EXTended memory is available

VIDPOP

type
String8 = string[8];

WindowRec = record
C1,R1,C2,R2 : Byte;
BufferPtr : Pointer;
BufferSize : Word;

 682 TOPAZ Appendix

SaveBuffer : Boolean;
end;

const
MonoCard = $0100; Standard monochrome cards
HercMono = $0200; Hercules monochrome cards
HGCPlus = $0201; HGCPlus (monochrome)
InColor = $0202; Hercules InColor card (color or mono)
CGACard = $0300; Standard Color Graphics Cards
EGAColor = $0400; EGA with EGA color monitor
EGAMono = $0401; EGA with monochrome monitor
EGACGA = $0403; EGA with CGA monitor
VGAColor = $0500; VGA with VGA color monitor
VGAMono = $0501; VGA with VGA monochrome monitor
MCGAColor = $0600; MCGA with color monitor
MCGAMono = $0601; MCGA with monochrome monitor

var
ScreenFound : Boolean;
MenuEscapeEnable : Boolean; default = True
MenuString : String;
MenuChoice : Integer;
MenuChar : Char;
MenuSeed : Integer;
MenuKey : Char;
VidpopPageSize : Word; default = 4000
AutoSaveMode : Boolean; default = False
IgnoreNumLock : Boolean; default = False unless extended keyboard found
ExitMenu : Boolean; default = False
BaseSeg : Word; set by initialization code
VideoOffset : Word; set by initialization code
EnableLeftRightMenuExit: Boolean; default = True
EnableUpDownMenuExit : Boolean; default = True

 TOPAZ Appendix 683

DEFAULT SETTINGS (see also Subject Index under "Default")

Browse windows: upper left corner: col= 1, row = 1
lower right corner: col= 80, row= 25

Browse colors:

if VideoMode <> 7 then { color system }
 SET_BROWSE_COLOR_TO(Black, Red, Yellow, Red,Black, LightGray)
else { mono system }
 SET_BROWSE_COLOR_TO(DarkGray, Black, LightGray, Black, Black, LightGray);

Browse edit direction: 'S'

Pick windows: upper left corner: col= 10, row= 10
lower right corner: col= 30, row= 20

Pick colors: Bar = Black on LightGray
Window = LightGray on Black

Calendars: col= 48, row= 2

Calendar colors: Lightgray on Black

Rotor position: col= 80, row= 1

Scoreboard row: 1

 684 TOPAZ Appendix

LOW LEVEL ACCESS TO dBASE FILES
TOPAZ can open, read, write, and append to dBASE files. If your program provides a variable record with

a structure that corresponds to the dBASE file structure, TOPAZ updates the data in this variable whenever you
position the dBASE pointer in the dBASE file, and copies data from this variable to the file when you issue a
REPLACE command. Wherever possible, a close emulation of the dBASE syntax is maintained. If your program does
not provide such a record, TOPAZ will maintain its own buffer, and you can use the intermediate level commands
to access fields in this buffer.

Suppose, you are writing a utility program that will need to open dBASE files, but the structures of which
are unknown to you at the time you write your code. Clearly you cannot specify a record buffer variable ahead of time.
Can TOPAZ help you out in these cases?

The answer is "yes", and there are several ways you can accomplish this. By far the easier way is to open
the file without a buffer at all! Like this:

USE('myfile', NIL, 0);

The file will be open, but the data in a record will not be transferred to a Pascal record. So how can you
work with it? By simply using the Intermediate Level routines described in the section "Intermediate Access to
dBASE Files" of this manual (and you may now even need those!). For example, suppose you just want to open a
DBF file of unknown structure, and BROWSE the data. In that case,

USE('myfile', NIL, 0);
BROWSE('');

That's all there is to it. If you want specific information about specific fields, you can turn to the
Intermediate Level routines.

Another method that is more difficult, but makes everything in the DBF file available to you on a byte level,
is to use the Low Level routines.

The six low level commands act on variables of type DbfRecord (a global type defined in the DBF4 unit).
The fields of DbfRecord are NOT the fields of the dBASE file you will be opening, but rather a collection of
counters, pointers, and buffers that you will need to refer to in order to interface to the dBASE file. The definition
of DbfRecord is:

dbfRecord = record
 (*) FileName : String[64]; { dbf filename with path }
 HeadProlog : HeaderPrologType; { header info }
 dStatus : StatusType; { was database modified }
 WithMemo : Boolean; { DBF contains memo field(s) }
 LastUpdate : String[8]; { date of last update }
 (*) NumRecs : LongInt; { total number of records }
 HeadLen : Integer; { size of header in bytes }
 RecLen : Integer; { length of record }
 (*) NumFields : Byte; { number of fields }
 (*) Fields : dFields; { pointer to field list }
 (*) CurRecord : dRec; { pointer to data }
 (*) CurRecNo : LongInt; { record number of data }
 dFile : File; { file var }

 TOPAZ Appendix 685

 end;

The asterisks indicate those fields which are generally the ones you will work with (the other fields, although
available to you, are there for internal housekeeping by the DBF4 unit). These fields are:

FileName. The dBASE filename, including extension.

NumRecs. The total number of records in the file, including "deleted" records.

CurRecNo. The sequence number of the current record.

CurRecord. This is a pointer to a buffer that contains the data of the current record in dBASE format.
NOTE: This is not the buffer referred to elsewhere as the "user record"! Since dBASE concatenates all
fields of a record into one continuous array, you will need a way to get to those bytes that correspond to a
particular field of the record. That is, you need to know the offset of the first byte of a field from the
beginning of the record, and the length of the field data stored in CurRecord^. The pointer Fields plays this
role.

Fields. This is a pointer to an array of field records that describes the dBASE file structure. Each
element of the array corresponds to one field of the dBASE structure, and they are in order of the fields as
they appear in each dBASE record. Fields points to an array [1..NumFields] of record where each element
of the array is defined as:

record
 Name : String[10]; { field name }
 Typ : Char; { field type: C,N,D,L,M }
 Len : Byte; { field width }
 Dec : Byte; { number of decimals in numeric field}
 Off : Word; { offset of data in record }
end;

So, some examples are:

Fields^[1].Name {the Name of the first field}
Fields^[4].Typ {the Type of the fourth field}

and so on. The variable Off ("offset") is the index to the first byte of the field data in the CurRecord^ buffer. To see
how this works, suppose we want to locate the data of the seventh field in the current record of an opened dBASE
file, and put the data into our own variable array of byte. Let's declare a variable "R" of type DbfRecord:

var R : dbfRecord;

Then the data for field 7 starts at:

R.CurRecord^[R.Fields^[7].Off]

and ends at:

R.CurRecord^[R.Fields^[7].Off + R.Fields^[7].Len - 1]

 686 TOPAZ Appendix

Thus we could use the Pascal "Move" to transfer this data to our own variable with the following code:

X := R.Fields^[7].Off; { number of bytes into record }
L := R.Fields^[7].Len; { number of bytes of data }
Move(R.CurRecord^[X], Our_Var, L);

or the same thing in one line of code would be:

Move(R.CurRecord^[R.Fields^[7].Off], Our_Var, R.Fields^[7].Len);

Given this data structure, here are the six low level commands provided by TOPAZ ("R" stands for a
variable of type DbfRecord, and "N" stands for a record number):

OpenDbf(R). R.filename must be set to an existing dBASE filename prior to calling this procedure.

CloseDbf(R). Closes the file, but does not write the current record.

GetDbfRecord(R,N). Read record N of the file and fill the R.CurRecord^ array with that record.

PutDbfRecord(R,N). Write record N of the file from data found in the R.CurRecord^ array. NOTE: This
will append new records to the file if N is greater than the last record.

AppendDbf(R). Appends a new record to the file with data found in the R.CurRecord^ array.

CreateDbf(R, filename, NumFields, Fields). Creates an empty DBF file of name "filename", with
NumFields number of fields, "Fields" must point to a field array describing those fields.

In the example below we show a comparison of High-Level and Low-Level TOPAZ commands. Each
procedure does exactly the same thing, namely, opens a file called DEMOGRAF.DBF, lists the record number and
a character field for all records in the database, and then closes the file.

procedure Show_High_Level_Method;
type

DEMOGRAF_record = record
 Deleted : Boolean;
 _FIRSTNAME : string[10];
 _AGE : LongInt; { width= 3 }
 _MARRIED : Boolean;
 _BORN : string[10]; { Date field }
 _COMMENT : string[10]; { Memo field }
end;

var DEMOGRAF : DEMOGRAF_record;
begin
 USE('demograf', @demograf, sizeof(demograf));
 while not dEOF do
 begin
 WriteLn(RecNo:6, ' ', demograf._firstname);
 SKIP(1);
 end;
 CloseDatabases;
end;

 TOPAZ Appendix 687

An equivalent program using the Low Level TOPAZ commands follows. In this
example, we will look for the first character field and list that field for all records.

Note: when using low level commands, it is not necessary to have the DEMOGRAF
variable, since Low Level commands are intended to be used with dBASE files of structures
possibly unknown to the programmer at coding time:

procedure Show_Low_Level_Method;
var
R : dbfRecord;
i,j : LongInt;
s : String;
begin
 R.filename := 'demograf.dbf';
 OpenDbf(R);
 if DbfError > 0 then
 begin
 WriteLn(R.Filename, 'NOT found!');
 halt;
 end;
 { look for a field of type Character }
 j := 0;
 repeat
 j := j + 1;
 until R.Fields^[j].Typ = 'C';
 {loop over all records in the file}
 for i := 1 to R.NumRecs do
 begin
 GetDbfRecord(R,i);
 s[0] := chr(R.Fields^[j].len);
 move(R.CurRecord^[R.Fields^[j].off], s[1], R.Fields^[j].len);
 WriteLn(R.CurRecNo:6, ' ', s);
 end;
 CloseDbf(R);
end;

As you can see, coding with High-Level TOPAZ is the way to go if you know what the
dBASE file structure will be at the time you write the program. If you wish to work with
dBASE files of unknown structure, the use of Intermediate Level commands is recommended.
Finally, if you insist on getting to each byte in the file and don't mind writing obscure code, you
have the option of the Low-Level commands. A complete demonstration program using all the
Low-Level functions and procedures can be found in LOWLEVEL.PAS found in the
SAMPLES.ZIP file on the TOPAZ SAMPLES disk.

NOTE: Both code examples above do not illustrate the use of the global variable
DbfError for error checking. Programs should check DbfError after every call to either high-
level or low-level procedures to assure that the procedure performed as expected.

NOTE: Before deciding to use these low level commands, see if your application may
only require TOPAZ's "intermediate level" access routines. Refer to the "Intermediate Level
Access to dBASE Files" section of this manual.

 688 TOPAZ Appendix

 TOPAZ Subject Index 689

S U B J E C T I N D E X

 690 TOPAZ Subject Index

 TOPAZ Subject Index 691

SUBJECT INDEX
A

AbsWhereX 164
AbsWhereY 164
Accumulator, Calculator . 77,

78
ActiveMemos 165
Add directories, PickFile . 79
AddISRVector, ISRs . 123, 166
AddStru, Virtual Files . 167
AddTarget, Mouse 168
AdvanceProgress bar . . . 169
AdvanceRotor 170
After, string manipulation

. 171
Age of file 296
ALIAS 172

Default 172, 466
SelectAlias 466
Set_Alias_To 473

ALOCK, Append Lock . 139, 173
Alpha, IsAlpha 333
Alternate

SET_ALTERNATE_ON/OFF . 474
SET_ALTERNATE_TO . . . 475

AM_PM 72, 174
American Date 69
American date format . . 509
Ampersand, Macro 26
ANSI date format 509
AnsiDate 69, 175
APPEND 176

AppendDBF 177
AppendFrom 178
AppendFromSDF 180

Appending Records, Multi-User
. 143

Area
CurrentArea 241
DisplayStatus 266
SELECT 464
SelectAlias 466
WhichArea 661

Array, SpoolArray 627
ASCENDING, Virtual Files 614
ASCII, Default OFF . . . 476
AssignMemo 182
At 183

AtPrint 184, 185
AtPrintControl 186
AtPrintGrid 187
AtPrintLine 189

Attribute
Set_CalendarAttr_To . 491

Authoring help . . . 120, 121
Autohalt 102, 477

Default ON 102, 477

Set_AutoHalt_On/Off . . 477,
478

AutoHelp
Set_AutoHelp_To 479

AUTOSAVE, EditText clause 280
AutoSaveMode 402

PopScreen 399
AvailableMemory, Virtual Files

. 190
Background Color

Set_Browse_Color_to . . 483
Set_Clock Color_To . . 495
SET_COLOR_TO 500
Set_Dialog_Color_To . . 512
Set_Editor_Color_To . . 517
Set_HighLight_To . . . 536
Set_Memo_Color_To . . . 542
Set_Menu_Color_To . . . 546
Set_Pick_Color_To . . . 566
Set_Progress_Color_To . 572
Set_Tag_Color_To . . . 606

Bar
Progress Bars 40
Set_Progress_Off . . . 574
Set_Progress_On 573

Basic Commands, Editor . 60, 61
Baud Rate 559, 570
Before, string manipulation

. 191
Bell

Default 550H\100 ms . . 480
Default OFF 480
RingBell 448
Set_Bell_To 480

Between, string manipulation
. 192

BIGGEST, Available Memory,
VFiles 190

BINOBJ 106, 399
Black and White, Set_BW_On/Off

. 488
BlankField 193
BLINK, ReportForm 436
Block Commands, Editor . 61, 62
BooleanSaySet 680
BooleanSet 677
Bottom

GoBottom 319
Set_Status_Bottom . . . 603

Box 194
Clear Interior 195
Dialog 35
DialogBox 37, 258
ExplodeMode 195
ExplodeRate 195
Heading 195, 602
Shadow 195

 692 TOPAZ Subject Index

WDialogBox 660
British Date 69
British date format . . . 509
BROWSE 42, 196

BROWSE.EXE 199
BrowseEdit 200
BrowseExitKeys . . 198, 671
BrowseField 201
BrowseFieldSeparator . 198
BrowseIsActive 202
BrowseRow 203
Colors 483
Command 197
Command Line Clauses . 197
Continue 197
Default 43
Default Exit Keys . . 196
Editing Keys 196
Fields 197
FirstField 197
Freeze 197
LineStyle 485
Lock 197
Multi-User 146
NoAppend 198
NoDelete 198
NoFollow 198
NoMenu 198
NoModify 198
NoPack 198
NoPrompt 198
NoStatus 198
Plain 198
PopBrowse 392
PushBrowse 413
PushBrowse, Save settings SET_CENTURY_OFF 494

. 413
ResetFirstField . . . 442
Restore settings . . . 392
Set_Browse_Calc_To . . 482
Set_Browse_Color_To . 196,

483 ClearEOL 211
Set_BrowseAttr_To . . 481
Set_BrowseCursor_On/Off ClearPage 213

. 484
Set_BrowseWindow_To . 198,

485 ClearWindowStack . . . 216, 399
Set_DataDefinition_To 506
UpdateBrowseRow . . . 648
UpdateBrowseScreen . . 649
Window Explode 485

Buffer flushing, Indexes 538
Buffer Size Default . . . 118
Buffer, Local Cache . . . 150
Buttons SelectClock 74, 467

ButtonSpacing 259
DialogBox 38, 259
Set_Button_Color_To . 487

Cache Buffer, Novell . . 150
Cache, Indexing 539
Calculate SystemTime 73

Set_Browse_Calc_To . . 482
Calculator 76-78, 204

RestoreCalcConfig . . . 444
SaveCalcConfig 450
Set_Calc_Color_To . 76, 489
Set_CalcWindow_To . . . 490

Calendar 73, 74
Default 74
Default Coordinates . . 492
DisplayCalendar . . 74, 75,

263
Scrolling thorough dates

. 74
Set_Calendar_To . . 74, 492
Set_CalendarAttr_To . . 491

CancelAllSpoolFiles . . . 205
CancelSpoolFile 205
CancelSpooling 206
Case

LOWER 351
ProperCase 412
UPPER 650
UpperCase 650

CaseSensitive, Password . 562
CDAY, Numeric string of day

. 207
CDOW 68
CDOW, Character Day of Week

. 207
Center, string manipulation

. 208
CenterButton, Mouse . . . 334
CENTERTEXT, Menu Clause . 358
Century

Default OFF 68, 494

SET_CENTURY_ON 493
ChainISRAddress, ISRs . . 123
CharsInSpooler 210
Citizen printer codes . . 671
ClearBoxes 195

ClearGets 212

ClearRecord 214
ClearScreenGets 215

Clock 71, 73
Color 495
CurrentClock 242
Default 73
Default Coordinates . . 498
Default Format 496
Default OFF 497

Set_Clock_Color_To 73, 495
Set_Clock_Format_To . . 73,

496
Set_Clock_To . . . 73, 498
Set_Clocks_On/Off . 73, 497

 TOPAZ Subject Index 693

Timer 73
CloseDatabases 217
CloseDBF 217
CloseIndexes 218
CloseLibrary 219
CloseScreenGets 220
CMONTH 68, 221
Color Convert

Background 483, 500
Browse 483
ColorMap 499
CurrentColors 243
Default 335
Default Clock 495
Default Progress . . . 572
Default Settings . . . 500
Dialog Colors 512
Editor Colors 517
Foreground 483, 500
ISCOLOR 335
LoadColorMap 344
Pick Colors 566
PopColors 393
PushColors 414
Set_Browse_Color_To . 483
Set_BrowseAttr_To . . 481
Set_Button_Color_To . 487
Set_BW_On/Off 488
Set_Calc_Color_To . . 489
Set_Clock_Color_To . . 73,

495 CopyMemoFrom 226
SET_COLOR_TO 500
Set_ColorMap_To . . . 499
Set_Dialog_Color_To . 512
Set_Editor_Color_To . 517
Set_Help_Color_To . . 532
Set_Highlight_To . . . 536
Set_Memo_Color_To . . 542
Set_Menu_Color_To . . 546
Set_Pick_Color_To . . 566
Set_Progress_Color_To 572
Set_Tag_Color_To . . . 606

Column, Set_Report_Column_To Country Code 91
. 580

Command, BROWSE 197
Commas 222
Comments, Memo fields . . . 53
CommitDbf 223
Compiler directives 10
Compiling applications . . 10
Conditional IF, IIF . . . 322
Confetti, screen saver . 125,

601 Creating dBASE Files 23
Configuration Creation of Reports 92

Calculator 444, 450
Confirm Current

Default OFF 501
SET_CONFIRM_ON/OFF . . 501

CONNECT, ReportForm . . . 437
Console CurrentFKey 244

Default OFF 502

SET_CONSOLE_ON/OFF . . 502
Context-sensitive pop-up help

. 119
ContextID, help . . . 120, 121
ContextNo, help . . . 120, 121
Continue, Browse 197
CONTINUE, searching . . . 224

Character to Date . . . 240
Character to Month . . 221
Character to Year . . . 248
Date to Character . . . 273
Day of Week to Character

. 207
Dollars, Real to String

. 270
FractString 309

Coordinates
dBASE System 52
Default Pascal . . 376, 503
Default Rotor 585
Pascal 52
ProgressWindow 575
Screen 52
Set_Coordinates_To . . 503
Systems 52

Copy
CopyFile 225
Copying memo field data

. 226

CopyStruFrom 227
CopyStruTo 228
CopyTo 229
CopyToMerge 230
CopyToSDF 232

Count
files in print queue . 411

Count, data entry fields . 459
COUNT, records 234
CountOf 235
Country

Default USA 91, 504
Set_Country_To 504

Courier, HP LaserJet . . . 670
CourierBold, HP LaserJet . 670
CREATE 8, 23
Create a database 8
CreateDBF 236
CreateMemoFile 237
CreateMenu . . . 109, 238, 358

CTOD, Character to Date . 240

CurrentArea 241
CurrentClock 242
CurrentColors 243

CurrentOrder 246

 694 TOPAZ Subject Index

CurrentMemory 245
Cursor 247

CursorVisible 247
Default ON 505
HideMouse 321
Mouse 553, 555
Set_BrowseCursor_On/Off SET_DELETED_ON/OFF . . 510

. 484
Set_Cursor_On/Off . . 505
ShowMouse 620

CYEAR 68, 248
Data Definition 506
Data Entry Control Keys . 422
Database SET_RELATION_TO 577

ALIAS 172, 473
APPEND 176
AppendDBF 177
AppendFrom 178
BROWSE 42, 196-198
ClearRecord 214
CloseDatabases 217
CloseDBF 217
CloseIndexes 218
CommitDbf 223
CopyFile 225
CopyStruFrom 227
CopyStruTo 228
CopyTo 229
CreateDBF 236
Creation of 8, 23
DBF 253
dBOF 254
Default ALIAS 466
Default Extension . 19, 23
Default Positioning . 198
Deleted 255
DeleteRec 256
dEOF 257
DisplayStatus 266
EDIT 274
EditRecord 278
FLOCK 307
GetDBFRecord 314
GO 318
GoBottom 319
GoTop 319
INDEX_ON 324
Indexing of 29
Intermediate Level Access Formats 69

. 131
LIST 342
Low Level Access . . . 684
LUPDATE 353
Memo fields 53
Modifying of 23
PACK 373
PutDBFRecord 420
RecallRec 427
RecCount 428
RecNo 428
RecSize 429

RenameFile 433
ReportForm 436
RLOCK 449
SELECT 464
SelectAlias 466
Set_Alias_To 473

SET_EXCLUSIVE_OFF . . . 526
SET_EXCLUSIVE_ON . . . 525
SET_FILTER_TO 528
Set_Flush_On/Off . . . 530
SET_INDEX_TO 539
SET_ORDER_TO 558

SField 617
SKIP 622
UNLOCK 647
USE 651
Viewing of 42
Virtual Files 82
WhichArea 661
ZAP 665

Database engine for Windows
. 159, 163

Date
American 69
Ansi 69, 175
British 69
CDAY, Numeric string of day

. 207
CDOW, Character Day of Week

. 207
CMONTH 221
country formats 509
CTOD, Character to Date

. 240
CYEAR 248
DateDiff 69, 249
DateFrom 69, 250
DateFromJulian 250
DatePlus 69, 251
DAY 252
DaysInMonth 252
Default Format 68
DOW 271
DTOC, Date to Character

. 273
FileDate 297

French 69
French Canadian 69
FullDate 312
German 69
Italian 69
JulianFromDate 339
LetterDate 340
Mathematics 68
MONTH 363
PICTURE 387
PICTURE Format 387
Russian 69

 TOPAZ Subject Index 695

SelectDate 75, 468
SET_CENTURY_OFF . . . 494
SET_CENTURY_ON 493
SET_DATE 509
SET_EPOCH_TO 520
Spanish 69
SystemDate 68, 637
ValidDate 653
YEAR 664

DAY 68, 252
CDAY, Numeric string of day Deleted OFF 510

. 207
CDOW, Character Day of Week Dialog Colors 512

. 207
DaysInMonth 252
DOW, Day of Week . . . 271

dBASE Coordinate System . . 52
dBASE File Use 18
DBF 253

CommitDbf 223
CreateDBF 236
DBFError . . 101, 477, 678
FlushDBF 308
GetDBFRecord 314
Intermediate Level Access EnableLeftRightExit . . 384,

. 131
LIST 342
Low Level Access . . . 684
OpenDBF 371
PutDBFRecord 420

dBOF 254
DBT, File extension 53
Deadlocks, Multi-User . . 147
Decimals, FieldDec . . . 292
Default . . 669, 671, 675-678

ALIAS . . . 172, 466, 473
Alternate 474
ASCII OFF 476
Autohalt ON . . . 102, 477
AvailableMemory . . . 190
Beep 480
Bell OFF 480
Browse 43
Browse Colors 483
Browse Window Settings Pick Colors 566

. 485
BrowseExitKeys 196
Buffer Size 118
BW OFF 488
Cache per Index . . . 539
Calendar 74
Calendar Coordinates . 492
Century OFF . . . 68, 494
Clock 73
Clock Color 495
Clock Coordinates . . 498
Clock Format 496
Clocks OFF 497
Colors 335, 500
Confirm OFF 501
Console OFF 502

Coordinates 52
Coordinates Pascal . . 376,

503
Country USA 91, 504
CurrentOrder 246
Cursor ON 505
Database File Ext. 19, 23,

229
Database Positioning . 198
Date Format 68

Delimiters NULL 511

DialogBox 36, 258
DialogWindow Coordinates

. 513
Edit Direction 'S' . . 515
EditMemo window 55
Editor 54
Editor size 541
EditRecord 278
EditText colors 60
EditText screen size . . 60
EditWindow 519

638
Escape OFF 523
Exact OFF 524
ExplodeMode 485
ExplodeRate 485
Find 31
Flush OFF 530
Highlight OFF 536
Hunt ON 537
Index File Ext. . . 30, 324,

354, 539
Library File Extension 372
Memo colors 542
Memory per Index . . . 325
Menu Trigger Key . . . 238
Odometer OFF 557
PacketSize 559
PageSize 184, 561
Pascal Filename 8

Pick file names 381
PickWindow Coordinates 567
PICTURE Date Format . . 387
PICTURE Time Format . . 387
Print OFF 571
Printer Port LPT1 . 569, 570
Progress Colors 572
ProgressWindow 575
Repaint ON 50, 579
ReportForm Column Heading

. 95
ReportForm Column Width . 95
ReportForm Decimal Places

. 95
ReportForm File Ext. . 92,

96, 436

 696 TOPAZ Subject Index

ReportForm TO SCREEN . . 96
ResetDefaultEditorKeys Direction

. 441
Rotor Coordinates . . 585
Rotor OFF 584
Safety OFF 586
SAYWHAT Directory . . 105
Scoreboard ON 587
Set_Browse_Window_to . 485
SGFieldCode 527
SnowProtection ON . . 596
Spooler Size 8K . . . 599
Tag order of items . . 607
Talk OFF 609
Templates 25
Timeout 610
VidpopPageSize 300

Defaults 683
Delete DisplayPage 265

Default OFF 510
Deleted 255
DeleteRec 256
PACK 373
PackMemoFile 374
SET_DELETED_ON/OFF . . 510
ZAP 665

Delimiters Dollars, Real to String . 270
Default NULL 511
SayGet 452
SET_DELIMITERS_TO . . 511

dEOF 257
Descending Index . . 33, 325,

354 DOW 68, 271
DESCENDING, Virtual Files DriveIsRemote 272

. 614
DesqView 51
Dialog EDIT 274

Box 35
Colors 512
DialogBox . . 35, 37, 258
DialogBox Message stacking EditMemo 54, 275

. 258
DialogBox, Buttons . . . 38
DialogBox, Default . . . 36
DialogBox, Function keys EditRecord 278

. 38
DialogBox, Press any key EditResult, ReadGets . 422

. 38
DialogBox, Spec.Attributes EditText clause 280

. 37
DialogBox, Timeouts . . 37
DialogRow 36
RemoveDialogBox . . . 431
Set_Dialog_Color_To . 512
Set_DialogWindow_To . 513
StayOnUntilRemoved . . 259
WDialogBox 660
Window Coordinates . . 513

Difference SaveEditConfig 451
DateDiff 249
TimeDiff 643

Different, structures . . 261

Set_EditDirection_To . 515
Direction, Set_EditDirection_To

. 515
Directory Update

CommitDbf 223
Set_Flush_On/Off . . . 530

Directory, PickFile clause
. 381

Disk
AvailableMemory, VFiles

. 190
CurrentMemory, VFiles . 245

Display
DisplayCalendar . . 74, 75,

263
DisplayMemo 264

DisplayStatus . . . 34, 266
DisplayWindow 267
monochrome 488, 511
Set_MemoDisplayWindow_To

. 543
Displaying SAYWHAT?! Screens

. 105

DOS Retry Count 514
Dot Commands 26-28
DoubleLine, LineStyle . . 194
DoubleTopSingleSide, LineStyle

. 194

DTOC, Date to Character . 273
Dynamic help messages . . 119

BrowseEdit 200
Clauses 63
Direction 'S' 515

EditMemo clauses . 63, 275,
276

EditorResult . . . 276, 281

EditResult 16, 423

EditText 60, 280

EditText clauses . 280, 281
EditText default colors . 60
EditText default screen size

. 60
Field 618
Full-Screen 15, 50
Keystrokes 422
PasteString 377
RestoreEditConfig . . . 445

ScreenEdit 457
Set_DataDefinition_To . 506

 TOPAZ Subject Index 697

Set_EditDirection_To . 515
Set_EditFKey 516
Set_EditWindow_To . . 519
Text 60
Window 519

Editor 60
Basic Commands . . . 60, 61
Block Commands . . . 61, 62
Clauses 63
Colors 517
Customization 54
Defaults 54
EditorResult . . . 276, 281
EditText 280
EditText clauses 63
Function Keys 62
Help 63
Move/Resize Window . . . 63
Print Document 63
ResetDefaultEditorKeys FIELD 131, 289

. 441
Save/Load Commands . . . 62
SaveEditConfig 451
Search/Replace Commands Definition of 50

. 61, 63
Set_Editor_Color_To . 517
Set_EditorWindow_To . 518
Set_MaxLines_To . . . 541
Size of 541
Word Wrap commands . . . 62

EditorResult 276, 281
EJECT 282
EMS FieldType 131, 295

AvailableMemory, VFiles IO Control 50
. 190

CurrentMemory, VFiles 245
EvaluateBiggest . . . 286

EnableLeftRightExit . 384, 638
EnableLeftRightMenuExit . 112
EnableMouse 283
EnableUpDownMenuExit . . 112
Epoch, SET_EPOCH_TO . . . 520
Epson Printer Codes . 669, 670
EraseFile 284

NotErased 368
Error Set_Bell_To 480

DBFError 477
Handling of 101
Numbers 678
Set_AutoHalt_On/Off . 477,

478 Set_FieldCode_To . . . 527
Set_ErrorHandler_To . 522
SpoolErrorMsg 628
WaitOnError 102

Escape SField 131, 617
Default OFF 523
SET_ESCAPE_ON/OFF . . 523

EvaluateBiggest 286
EventPending 287
Exact File

Default OFF 524

SET_EXACT_ON/OFF . . . 524
EXIT

Edit-memo session . . . 276
Edit-text session . . . 281

ExitField, ReadGets . . . 423
ExitMenu 547
ExitRead, ReadGets 423
Expand a filename, FExpand

. 288
Explode 669

BOX 195
Calendar 74
ExplodeMode 195, 485
ExplodeRate 195, 485

Explode, LineStyle 194
EXT

AvailableMemory, VFiles
. 190

CurrentMemory, VFiles . 245

Attributes 50
BlankField 193
BrowseField 201

Editing 50
FieldAddress . . . 131, 290
FieldCode 527
FieldCount 131, 291
FieldDec 131, 292
FieldLen 131, 293
FieldNo 131, 294
Fields, BROWSE 197

Peek 378
PICTURE 386
Poke 391
RANGE 421
Required 439
ResetFirstField 442
SayGet 452, 453
ScreenFieldCount . . . 459
ScreenFieldNames . . . 460
ScreenFieldNo 460
Set_ASCII_On/Off . . . 476

SET_CONFIRM_ON/OFF . . 501
Set_Cursor_On/Off . . . 505
SET_DELIMITERS_TO . . . 511
SET_EXACT_ON/OFF . . . 524

Set_FKey 529
Set_Timeout_To 610
Set_Validate_To 611

SGFieldType 619
SPACE 626
TRIM 645

FIFO, Virtual Files . 85, 614

ALOCK 139, 173

 698 TOPAZ Subject Index

Bottom of 254
Cache buffers, Novell 150
CopyFile 225
CreateMemoFile 237
dBOF 254
Default Pick Files . . 381
dEOF 257
End of 257
EraseFile 284
FExpand 288
File handles, Multi-User First match, FindFirst . . 305

. 153
File handles, Novell . 150
FileAge 296
FileDate 297
FileExists 298
FileInUse 299
Filename 654
FLOCK 139, 307
FSplit 311
Index Extension . 30, 324,

354 DOS Buffers 308
Index Path/Name . . . 365
Locking 139
Locking of 514, 556
LockUnLock 348
Name Selecting 79
NotErased 368
PACK 373
PackMemoFile 374
Pascal Extension 8
PickFile 380
Picklists 79
PrintFile 408
RenameFile 433
ReportForm Extension . 96,

436 Set_Tag_Color_To . . . 606
ReportForm File Extension Formatting numbers . 222, 386-

. 92
RLOCK 449
SELECT 464
Semaphore files . . . 152
SET_ALTERNATE_ON/OFF . 474
SET_ALTERNATE_TO . . . 475
Set_Flush_On/Off . . . 530
SET_INDEX_TO 539
Set_IndexFlush_On/Off 538
SET_RELATION_TO . . . 577
Set_VFileMode_To . . . 614
TagFiles 80, 638
TaggedFile 80, 639
UniqueFilename 646
UNLOCK 139, 647
Unlocking of 647
USE 651
ValidFilename 654
Virtual Files 82
ZAP 665

FillPage 300
FillWindow 302
Filter, SET_FILTER_TO . . 528

FIND 31, 304
CONTINUE 224
Default 31
FindFirst 305
FindNear 31, 306
Found 674
LOCATE 347
SET_RELATION_TO 577
Set_Soundex_To 597
Soundex 33, 625

First-In-First-Out, VFiles 85,
614

FirstField, BROWSE 197
FKey

Constants . . 423, 529, 676
CurrentFKey 244
Set_FKey 529

FLOCK, File locking . 139, 307
Flush

Default OFF 530

FlushDBF 308
Set_Flush_On/Off . . . 530
Set_IndexFlush_On/Off . 538

Foreground Color
Set_Browse_Color_To . . 483
Set_Clock_Color_To . . 495
SET_COLOR_TO 500
Set_Dialog_Color_To . . 512
Set_Editor_Color_To . . 517
Set_HighLight_To . . . 536
Set_Memo_Color_To . . . 542
Set_Menu_Color_To . . . 546
Set_Pick_Color_To . . . 566
Set_Progress_Color_To . 572

388
Formfeed, Set_Report_FormFeed

. 581
Found 31, 674

NetworkFound 366
FractString 309
Free-form comments/memos . . 53
FreeSpace, Virtual Files . 310
Freeze, BROWSE 197
French Canadian Date 69
French canadian date format

. 509
French Date 69
French date format 509
Full-Screen Editing . . 15, 50
Full-Screen Images 104
FullDate 312
FULLSCREEN

EditMemo clause 275
EditText clause 280

Function Key
Constants 676
CurrentFKey 244

 TOPAZ Subject Index 699

DialogBox 38
Editor 62
Set_EditFKey 516
Set_FKey 529
Set_MenuFkeys_To . . . 547
Set_PickCalc_To . . . 565

German Date 69
German date format . . . 509
Get TOPAZ help system . . . 119

ClearGets 212
ClearScreenGets . . . 215
CloseScreenGets . . . 220
DoScreenGets 268
GetAtPrint 313
GetAtPrintControl . . 313
GetDBFRecord 314
GetEvent 315
GetMouseXY 317
PopScreenGets 401
PushScreenGets 418
ReadGets 422
SayGet 452, 453
SET_DELIMITERS_TO . . 511

Global INCLUDE.TEM 26
Constants . 669-674, 676-

681 323
Types . . 669-674, 676-681
Variables . 669-674, 676-

681 Buffer flushing on/off 538
GO 318
GoBottom 319
GoTop 319
GraphicsMode 320
Grid, AtPrintGrid 187
Groups, Report 531
Hardware Requirements . . . 4
Heading FIND 304

Box 195
Menu clause 358
Page 560
Set_PickWindow_To . . 567

Heading, ReportForm . . . 436
HEAP Multi-User 145

AvailableMemory, VFiles NDX 365
. 190

CurrentMemory, VFiles 245
EvaluateBiggest . . . 286

Heap space 126
Heap space requirements . 127
Help SET_INDEX_TO 539

Authoring 120, 121
Color 512
Context-sensitive . . 119
ContextID 120, 121
ContextNo 120, 121
DialogBox 258
Editor 63
Lotus-Style 112
Set_AutoHelp_To . . . 479
Set_DialogWindow_To . 513
Set_FKey 529

Set_Help_Color_To . 120, 532
SET_HELP_ON/OFF 534
Set_Help_To 120, 535
Set_HelpWindow_To . 120, 533
Set_MenuFkeys_To . . . 547
Set_MenuHelp_To . . 112, 549
Set_ScreenHelp_To . . . 589
Text Editor 63

Helvetica, HP LaserJet . . 670
HIDDEN, PickFile clause . 381
HideMouse 321
HighLight

Default OFF 536
Set_Highlight_To . . . 536

Hours, InHours 327
Hunt

Default ON 537
Set_Hunt_On/Off 537

IBM Pro Printer II 670
IgnoreNumLock 113, 682
IIF 322
Immediate IF, IIF 322

Indent, string manipulation

Index
AdvanceRotor 170

Cache 325, 539
CloseIndexes 218
Creation of 29
CurrentOrder 246
DESCENDING . . 33, 325, 354
DisplayStatus 34
File Extension . . 324, 354

INDEX_ON 324
Indexing Databases . . . 29
KeyMakerPtr 354
MakeIndex 34, 354
Memory Requirement . . 325

NOCACHE . . . 325, 354, 539
Order 246, 365
REINDEX 430
Safety 586
ScoreBoard 587, 588

Set_IndexFlush_On/Off . 538
SET_ODOMETER_ON/OFF . . 557
SET_ORDER_TO 558
Set_Rotor_On/Off . . . 584
Set_Rotor_To 585
Set_VFileKey_To 613
SortVFile 624
SOUNDEX 32, 325, 354

INDEX_ON 324
InHours 72, 327
InMinutes 72, 327

 700 TOPAZ Subject Index

InSeconds 72, 328
Insert Mode, ReadGets . . 423
Insert string 377
INSERTION, Virtual Files 85,

614 Last-In-First-Out, VFiles 85,
InsertRec, Virtual Files 329
Integer LastKey, ReadGets 423

IntegerVal 330
SInteger 621

Intermediate Level Access Length, FieldLen 293
 131

Interrupt Service Routines Library
. 123

AddISRVector . . . 123, 166
ChainISRAddress . 123, 209
RemoveISRVector . 123, 432
RestoreISRs 123
ResumeISRs 446
Set_Clocks_On 123
Set_ScreenSaver_On . . 123
SuspendISRs . . . 123, 635

InTicks 72, 331
IPL 332
IsAlpha 333
IsCenterButtonDown . . . 334
ISCOLOR 335
IsLeftButtonDown 336
IsLower 337
IsRightButtonDown 338
ISRs 123

AddISRVector . . . 123, 166
ChainISRAddress . 123, 209
RemoveISRVector . 123, 432
RestoreISRs 123
ResumeISRs 446
Set_Clocks_On 123
Set_ScreenSaver_On . . 123
SuspendISRs . . . 123, 635

IsUpper 337
Italian Date 69
Italian date format . . . 509
Item, TaggedItem . . 80, 640
Item, TagItems 641
Items, Tag 80
Julian Date Locking a file, ALOCK . . 173

DateFromJulian 250
JulianFromDate 339

Key Lotus-Style Help 112
INDEX_ON 324
KeyMakerPtr 354
MakeIndex 354
Set_VFileKey_To . . . 613
WatchKeys 677

Key pressed Macro commands 26, 27
LastKey 423, 680
MenuKey 110
Set_FKey 529
WAIT_TO 659
WatchKeys 677

Keyboard, remapping 65
Label, VolumeLabel . . . 658

Labels, printing . . . 98, 185
Landscape, HP LaserJet . . 670
Laptops, display 511
Last Update, LUPDATE . . . 353

614

Left TRIM, LTRIM 352
LeftButton, Mouse 336

LetterDate 340

CloseLibrary 219
File Extension 372
LibScreenName 341
MemLibScreenName . . . 357
OpenLibrary 372
PopLib 394
PopLibMem 395
Screen 106
Screens 104

LIFO, Virtual Files . 85, 614
Line, AtPrintLine 189
LineNumber, ReportForm . . 437
LinePrinter, HP LaserJet . 670
LineStyle 194, 669

Box 194
Browse 485
DoubleTopSingleSide . . 485,

490, 492, 513, 518, 519,
533, 543, 545, 551, 567,

575, 602
Explode 195
Heading . 195, 567, 575, 602
Shadow 195

Linked Lists, Virtual Files
. 82

LIST 342
Clauses 342
Linked Lists 82
ListSpoolData 343
PickList 79, 383

LOCATE 347
Lock, BROWSE 197

LockUnLock 348
LongVal 350

Low Level Access 684
LOWER 351

IsLower 337
LTRIM 352
LUPDATE 353

MakeIndex 34, 354
MAKEPAS 8, 25-28, 652
Mathematics

Calculator 204
DATE 68
FractString 309
Set_Browse_Calc_To . . 482

 TOPAZ Subject Index 701

SUM 634
TIME 71

MaxAvailRows 355
MaxPageLines 356
MemLibScreenName 357
MEMO 53

ActiveMemos 165
AssignMemo 182
CopyMemoFrom 226
CreateMemoFile 237
DisplayMemo 264
Editing Commands . . 60, 61
EditMemo 54, 275
EditMemo clauses 63
EditMemo default window GraphicsMode 320

. 55
EditorResult . . . 276, 281
Fields 53
File 53
Memo Fields 53
Multi-User 147, 152
PackMemoFile 374
PasteString 377
Pasting data/text . . . 58
PrintMemo 409
RestoreEditConfig . . 445
SaveEditConfig 451
SayGet 454
SendMemo 471
Set_EditFKey 516
Set_Memo_Color_To . . 542
Set_MemoWidth_To . . . 544
Set_MemoWindow_To . . 545
WReadMemo 662
WWriteMemo 663

Memory, CurrentMemory . . 245
MemoryType 190
Menu 109, 358

Clauses 358
CreateMenu 109, 238
ExitMenu 547
IgnoreNumLock . . 113, 682
Menu Screens 104
MenuChar 110, 415
MenuChoice 110, 415
MenuEscapeEnable . . . 112
MenuKey 110
MenuMargin 358
MenuSeed 112, 415
MenuSeparatorChar . . 358
MenuString 110, 415
Moving Bar 108
Moving-Bar Menu . . . 109
Moving-Bar Menus . . . 104
PICTURE 387
PopMenu 396
PushMenu 415
Set_Menu_Color_To . . 546
Set_MenuFKeys_To . 110, 547
Set_MenuHelp_To . 112, 549
Set_MenuTimeOut_To . . 550

Set_MenuWindow_To . . . 551
Trigger Key . 110, 112, 238

Merge records 230
MESSAGE 362

Color 512
DialogBox 258
Message 362
ReportForm 436
Set_DialogWindow_To . . 513
SET_SCOREBOARD_ON/OFF . 587
Set_ScoreBoard_To . . . 588
SpoolErrorMsg 628

Minutes, InMinutes 327
Mode

VideoMode 656
Modifying dBASE Files . . . 23
Monochrome display . . 488, 511
MONTH 68, 363

CMONTH 221
DaysInMonth 252

Mouse 114
AddTarget 168
constants 115, 681
cursor 554
DisableMouse 262
disabling 116
EnableMouse 283
EventPending 287
functions 115
GetEvent 315
GetMouseXY 317
HideMouse 321
IsCenterButtonDown . . 334
IsLeftButtonDown . . . 336
IsRightButtonDown . . . 338
MouseX 364
MouseY 364
OnDoubleClick 369
OnMouse 370
PopMouse 397
position of 317, 364
procedures 115
PushMouse 416
ResetMouse 443
Set_Mouse_Window_To . . 554
Set_MousePointer_To . . 553
SetMouseXY 555
ShowMouse 620
target ID 114
targets 114

Move and Resize Window, Editor
. 63

Moving-Bar Menus . . . 109, 238
 108

Multi-User 137
ALOCK 139, 173
Browsing 146
Commands 139
CommitDbf 223
Deadlocks 147

 702 TOPAZ Subject Index

FileInUse 299
FLOCK 139, 307
FlushDBF 308
Indexing 145
Locking Retries . . . 139
LockUnLock 348
Logical Locks 152
Memo files 147, 152
NetworkFound 366
Packing 145
Program Overlay Files 149
Releasing Locks . . . 139
Reports 146
RLOCK 139, 449
Semaphore files . . . 152
Set_DosRetry_To . . . 514
SET_EXCLUSIVE_OFF . . 526
SET_EXCLUSIVE_ON . . . 525
Set_NetError_To . . . 556
Set_Retry_To 583
Sharable file attributes NOSCROLL, EditRecord clause

. 154
UNLOCK 139, 647
Zapping files 145

NDX 365
Network 137

ALOCK 139, 173
Browsing 146
CommitDbf 223
Deadlocks 147
DriveIsRemote 272
FLOCK 139, 307
FlushDBF 308
Indexing 145
Locking Retries . . . 139
LockUnLock 348
Logical Locks 152
Memo files 147, 152
NetworkFound 366
Novell 150
Packing 145
Printing 151
Program Overlay Files 149
Releasing Locks . . . 139
Reports 146
RLOCK 139, 449
Semaphore files . . . 152
Set_DosRetry_To . . . 514
SET_EXCLUSIVE_OFF . . 526
SET_EXCLUSIVE_ON . . . 525
Set_NetError_To . . . 556
Set_Retry_To 583
Sharable file attributes 559

. 154
Supported Networks . . 137
UNLOCK 139, 647
Zapping files 145

NoAppend, BROWSE 198
NOBACKUP, EditText clause MaxPageLines 356

. 280
NOCACHE 325, 354, 539

NOCREATE, EditText clause 280
NoDelete, BROWSE 198
NoEdit 367

EditMemo clause 275
EditText clause 280

NOEXTENSION, PickFile clause
. 381

NoFollow, BROWSE 198
NoLine, LineStyle 194
NoMenu, BROWSE 198
NoModify, BROWSE 198
NoPack, BROWSE 198
NoPrompt, BROWSE 198
NORESIZE

EditMemo clause 275
EditText clause 280

NORESTORE
EditMemo clause 275
EditText clause 280

NORMAL, PickFile clause . 381

. 278
NOSTATUS

BROWSE clause 198
EditMemo clause 275
EditText clause 280

NotErased, files 368
Novell

Network 150
Numbers, formatting of . . 222,

386-388
NumLock, ignore . . . 113, 682
Odometer

Default OFF 557
ScoreBoard 587, 588
SET_ODOMETER_ON/OFF . . 557

Okidata printer codes . . 670
OnMouse 370
OpenDBF 371
OpenLibrary 372
Order

CurrentOrder 246
SET_INDEX_TO 539
SET_ORDER_TO 558

Overlay files, Multi-User 149
Overlay initialization . . 129
Overlay manager 130
Overlaying units 129
PACK 373

Multi-User 145
PackMemoFile 374

PacketSize, Set_PacketSize_To

Page
AtPrint 184, 185
AtPrintControl 186
DisplayPage 265
FillPage 300

PageLine 375
PageNumber 437

 TOPAZ Subject Index 703

PageSize 561
SendPage 472
Set_PageHeading_To . . 560
Set_PageSize_To . 184, 561

Paint 376
Set_Repaint_On/Off . . 579

Panasonic printer codes . 671
Pascal AtPrintControl 186

Coordinate System . . . 52
Coordinates 376
Default Coordinates . 503
Version supported . . . 4

Password, Set_Password_To CancelSpooling 206
. 562

Peek 378, 563
Set_PeekCache_To . . . 563

Phonetic search, Soundex 625
Pick Default OFF 571

Add directories 79
PickFile 79, 380
PickFileResult 381
Picking a file 79
Picking from Lists . . . 79
PickList 80, 383
Set_Pick_Color_To . . 566
Set_Pick_Colors_To . . 566
Set_PickCalc_To . . . 565
Set_PickWindow_To . . 567
Window Coordinates . . 567

PICTURE 386
Date Format 387
Menu 387
Summary of Functions . 387
Template elements . . 386

PLAIN Okidata 670
BROWSE clause 198
EditMemo clause . . . 276
EditRecord clause . . 278
EditText clause . . . 281

Plural, string manipulation PrintComStatus 406
. 390

Poke 391
Pop PrinterReady 407

Pop-up calculator . . . 76
Pop-up help 119
PopBrowse 392
PopColors 393
PopLib 394
PopLibMem 395
PopMenu 396
PopMouse 397
PopRec, Virtual Files 398
PopScreen 399
PopScreenGets 401
PopSqz 402
PopWindow 403

Port, Set_Printer_Port_To SET_PRINTER_TO 570
. 569

Position Progress Bar . . 404
Position, Calculator . . 444,

450 Set_Spooler_Size . . . 599

Position, Set_Position_To 568
PosOf, Position in string 405
POSTCODE, ReportForm . . . 436
PRECODE, ReportForm . . . 436
Press any key, DialogBox . . 38
Print

AtPrint 184

AtPrintGrid 187
AtPrintLine 189
CancelAllSpoolFiles . . 205
CancelSpoolFile 205

Citizen printer codes . 671
ClearPage 213
Courier 670
CourierBold 670

Default Port LPT1 . . . 569
EJECT 282
Epson 669, 670
from the Editor 63
GetAtPrint 313
GetAtPrintControl . . . 313
Helvetica 670
HP Laser Jet printer codes

. 670
IBM Pro Printer II . . 670
Indent 323
Landscape 670
LinePrinter 670
ListSpoolData 343
MaxPageLines 356
Network 151

page buffer 313
PageLine 375
Panasonic printer codes

. 671

PrintComTimeSlice . . . 406
Printer Codes . . . 669-671

PrintFile 408
PrintMemo 409
PrintQueueCount 411
PrintQueueItem 411
RealPrinterStatus . . . 425
SendPage 472
SET_ALTERNATE_ON/OFF . 474
SET_ALTERNATE_TO . . . 475
Set_PacketSize_To . . . 559
Set_PageHeading_To . . 560
Set_PageSize_To . . 184, 561
SET_PRINT_ON/OFF . . . 571
Set_Printer_Port_To . . 569

Set_Report_FormFeed . . 581
Set_Report_Separator . 582
Set_Spooler_On 598

 704 TOPAZ Subject Index

Set_SubGroup_To . . . 604
SpoolArray 627
Spooler Routines . . . 117
SpoolerReady 628
SpoolErrorMsg 628
SpoolFile 627
Spooling 117
StartSpooling 633
StopSpooling 633
Toshiba P351SX 671
two reports/page . . . 437
ViewQueue 657

PRINT.COM 205
PROGRAM.TEM 8, 26
Programming Templates . 8, 25-

28 RecNo 428
Progress RecSize 429

AdvanceProgress . . . 169
Percentage scales . . . 41
PositionProgress . . . 404
Progress Bars 40
ResumeProgress 447
Set_Progress_Color_To 572
Set_Progress_Off . . . 574
Set_Progress_On . . . 573
Set_ProgressWindow_To 575
StartProgress 631
SuspendProgress . . . 636

ProperCase 412
Push SET_RELATION_TO 577

PushBrowse 413
PushColors 414
PushMenu 415
PushMouse 416
PushRec, Virtual Files RemoveISRVector, ISRs . . 123,

. 417
PushScreenGets 418
PushWindow 419

PutDBFRecord 420
Raised, LineStyle 194
RANGE 421
Read Memo, Windows . . . 662
ReadGets 422

ExitField 423
ExitRead 423
Insert Mode 423
LastKey 423
Padding 422
SpreadSheetMode . . . 423
WatchKeys 423

READONLY, PickFile clause ReportForm 436
. 381

Ready, spooler 628
Real, SReal 630
RealPrinterStatus 425
RealVal 426
Reboot, IPL 332
RecallRec 427
RECCOUNT 428
Recessed, LineStyle . . . 194
RecNo 428

Record 558
APPEND 176
AppendDBF 177
ClearRecord 214
COUNT 234
Deleted 255
DeleteRec 256
EditRecord 278
GetDBFRecord 314
InsertRec 329
Locking of 139, 449
PACK 373
PutDBFRecord 420
RecallRec 427
RECCOUNT 428

RLOCK 139, 449
SET_DELETED_ON/OFF . . 510
SKIP 622
UNLOCK 139
ZAP 665

Record locking
RLOCK 449
Set_DosRetry_To 514
Set_NetError_To 556

Register, Calculator . . 76, 77
REINDEX 430
Relation

Releasing Locks 139
Releasing locks, UNLOCK . 139
Remote Drive on Network . 272
RemoveDialogBox 431

432
RenameFile 433
Repaint

Default ON 50, 579
Set_Repaint_On/Off . . 579

REPGEN 92, 436, 580
REPLACE 434

Poke 391
REPLICATE 435
Report

CONNECT clause 437
Creation of 92
Multi-User 146
REPGEN 92, 436, 580
Report Generator 92

ReportForm Defaults . . . 95
ReportForm Extension . . 92
ReportForm File Ext. . 436
ReportForm File Extension

. 96
Set_Group_To 531
Set_PageHeading_To . . 560
Set_Report_Column_To . 580
Set_Report_FormFeed . . 581
Set_Report_Separator . 582

 TOPAZ Subject Index 705

Set_SubGroup_To . . . 604
TO SCREEN Default . . . 96

Required 439
RequiredMemory, VFiles ClearScreenGets 215

. 440
Reset Coordinates 52

ResetDefaultEditorKeys CursorVisible 247
. 441

ResetFirstField . . . 442
ResetMouse 443

Restore DialogBox 35
Default Editor Keys . 441
PopBrowse parameters . 392
RestoreEditConfig . . 445
SaveEditConfig parameters 105

. 451
RestoreCalcConfig 444
RestoreISRs, ISRs 123
ResumeISRs, ISRs 446
RightButton, Mouse . . . 338
RingBell 448
RLOCK, Record locking . . 139,

449 Menu 358
Rockets, screen saver . . 125,

601 Moving-Bar Menu 108
Rotor Paint 376

AdvanceRotor 170
Coordinates 585
Default OFF 584
Set_Rotor_On/Off . . . 584
Set_Rotor_To 585

Row PopSqz 402
MaxAvailRows 355
UpdateBrowseRow . . . 648

RULER PushMenu 415
EditMemo clause . . . 275
EditText clause . . . 280

Russian Date 69
Russian date format . . . 509
Safety Saver, Set_SSType_To . 601

Default OFF 586
SET_SAFETY_ON/OFF . . 586

Save and Load commands, Edito ScreenEdit 457
r62 ScreenFieldCount . . . 459

Save Parameters ScreenFieldNames . . . 460
PushBrowse 413

Save, screen saver . 590, 591
SaveCalcConfig 450
SaveEditConfig 451
SayGet 452-454

_Static 454
NoEdit 367
SgFieldEdited 618
SGFieldType 619

SAYWHAT?! 104
Squeeze 629
VGABrightBackEnabled . 402

SBoolean 456
Scoreboard Set_PickWindow_To . . . 567

Default ON 587
SET_SCOREBOARD_ON/OFF 587

Set_ScoreBoard_To . . . 588
Screen 394

Box 194

CloseScreenGets 220

Default BW OFF 488
Default Directory . . . 105
Default EditRecord . . 278

Display of 105
DisplayCalendar 263
Displaying SAYWHAT?! Screens

DoScreenGets 268
Full-Screen Images . . 104
Libraries 106
Library 104
LibScreenName 341
Lotus-Style Help . . . 112
MemLibScreenName . . . 357

MESSAGE 362

PopColors 393
PopLib 394
PopMenu 396
PopScreen 399
PopScreenGets 401

PopWindow 403
PushColors 414

PushScreenGets 418
PushWindow 419
ReadGets 422
ResetFirstField 442

Saver, Set_SSWindow_To 602
Screen Manager 104

ScreenFieldNo 460
Set_Browse_Color_To . . 483
Set_BrowseWindow_To . . 485
Set_BW_On/Off 488
SET_COLOR_TO 500
Set_ColorMap_To 499
SET_CONSOLE_ON/OFF . . 502
Set_Coordinates_To . . 503
Set_Cursor_On/Off . . . 505
Set_Editor_Color_To . . 517
Set_Highlight_To . . . 536
Set_MenuHelp_To 549
Set_Pick_Color_To . . . 566

Set_Position_To 568
Set_Repaint_On/Off . . 579

 706 TOPAZ Subject Index

SET_SCOREBOARD_ON/OFF 587
Set_ScoreBoard_To . . 588
Set_ScreenHelp_To . . 589
Set_ScreenSaver_On . . 590
Set_ScreenSaver_On/Off Set_Calc_Color_To . . . 489

. 591
Set_ScreenShadow_On . 592
Set_SnowProtection_On/Off Set_CalendarAttr_To . . 491

. 596
Set_SSType_To 601
Set_Status_Bottom . . 603
Set_Status_Top 603
SET_TALK_ON/OFF . . . 609
Squeeze 629
UpdateBrowseRow . . . 648
UpdateBrowseScreen . . 649
VGABrightBackEnabled . 402
VideoMode 656
VIDPOP 104
WAIT_TO 659

Screen saver 124, 125
Scrolling, Calendar 74
Search 461

CONTINUE 224
LOCATE 347
Peek 378
SearchFile 463
Sequential 197
Set_Search_To 594
Set_Soundex_To 597
Soundex 625

Search/Replace commands, Set_EditorWindow_To . . 518
Editor 61, 63

Seconds, InSeconds . . . 328
SEED, PickFile clause . . 381
SELECT 464
SelectAlias 466
SelectClock 74
SelectDate 75
Semaphore files 152
SendMemo 471
SendPage, Printing . . . 472
Separator, Set_Flush_On/Off . . . 530
 Set_Report_Separator_To Set_Group_To 531
. 582
Sequential Search, BROWSE SET_HELP_ON/OFF 534

. 197
Set Set_HelpWindow_To . 120, 533

Set_Alias_To 473
SET_ALTERNATE_ON/OFF . 474
SET_ALTERNATE_TO . . . 475
Set_ASCII_On/Off . . . 476
Set_Autohalt_On/Off . 477
Set_AutoHelp_To . . . 479
Set_Bell_To 480
Set_Browse_Calc_To . . 482
Set_Browse_Color_To . 483
Set_BrowseAttr_To . . 481
Set_BrowseCursor_On/Off Set_Menu_Color_To . . . 546

. 484

Set_BrowseWindow_To . . 198,
485

Set_Button_Color_To . . 487
Set_BW_On/Off 488

Set_CalcWindow_To . . . 490
Set_Calendar_To . . 74, 492

SET_CENTURY_OFF 494
SET_CENTURY_ON 493
Set_Clock_Color_To 73, 495
Set_Clock_Format_To . . 73,

496
Set_Clock_To . . . 73, 498
Set_Clocks_On/Off . 73, 497
SET_COLOR_TO 500
Set_ColorMap_To 499
SET_CONFIRM_ON/OFF . . 501
SET_CONSOLE_ON/OFF . . 502
Set_Coordinates_To . . 503
Set_Country_To 504
Set_Cursor_On/Off . . . 505
Set_DataDefinition_To . 506
SET_DATE 509
SET_DELETED_ON/OFF . . 510
SET_DELIMITERS_TO . . . 511
Set_Dialog_Color_To . . 512
Set_DialogWindow_To . . 513
Set_DosRetry_To 514
Set_EditDirection_To . 515
Set_EditFKey 516

Set_EditWindow_To . . . 519
SET_EPOCH_TO 520
Set_ErrorHandler_To . . 522
SET_ESCAPE_ON/OFF . . . 523
SET_EXACT_ON/OFF . . . 524
SET_EXCLUSIVE_OFF . . . 526
SET_EXCLUSIVE_ON . . . 525
Set_FieldCode_To . . . 527
SET_FILTER_TO 528
Set_FKey 529

Set_Help_Color_To . 120, 532

Set_Help_To 120, 535

Set_Highlight_To . . . 536
Set_Hunt_On/Off 537
SET_INDEX_TO 539
Set_IndexFlush_On/Off . 538
Set_MaxLines_To 541
Set_Memo_Color_To . . . 542
Set_MemoDisplayWindow_To

. 543
Set_MemoWidth_To . . . 544
Set_MemoWindow_To . . . 545

Set_MenuFkeys_To . . . 547
Set_MenuHelp_To . . 112, 549

 TOPAZ Subject Index 707

Set_MenuTimeOut_To . . 550
Set_MenuWindow_To . . 551
Set_Mouse_Window_To . 554
Set_MousePointer_To . 553
Set_NetError_To . . . 556
SET_ODOMETER_ON/OFF . 557
SET_ORDER_TO 558
Set_PacketSize_To . . 559
Set_PageHeading_To . . 560
Set_PageSize_To . . . 561
Set_Password_To . . . 562
Set_PeekCache_To . . . 563
Set_Pick_Color_To . . 566
Set_PickCalc_To . . . 565
Set_PickWindow_To . . 567
Set_Position_To . . . 568
SET_PRINT_ON/OFF . . . 571
Set_Printer_Port_To . 569
SET_PRINTER_TO 570
Set_Progress_Color_To 572
Set_Progress_Off . . . 574
Set_Progress_On . . . 573
Set_ProgressWindow_To 575
SET_RELATION_TO . . . 577
Set_Repaint_On/Off . . 579
Set_Report_Column_To . 580
Set_Report_FormFeed . 581
Set_Report_Separator . 582
Set_Retry_To 583
Set_Rotor_On/Off . . . 584
Set_Rotor_To 585
SET_SAFETY_ON/OFF . . 586
SET_SCOREBOARD_ON/OFF 587
Set_ScoreBoard_To . . 588
Set_ScreenHelp_To . . 589
Set_ScreenSaver_On/Off SPACE 626

. 590, 591
Set_ScreenShadow_On . 592
Set_Search_To 594
Set_SnowProtection_On/Off 37

. 596
Set_Soundex_To 597
Set_Spooler_On 598
Set_Spooler_Size . . . 599
Set_SSType_To 601
Set_SSWindow_To . . . 602
Set_Status_Bottom . . 603
Set_Status_Top 603
Set_SubGroup_To . . . 604
Set_Tag 605
Set_Tag_Color_To . . . 606
Set_TagOrder_On/Off . 607
Set_TagWindow_To . . . 608
SET_TALK_ON/OFF . . . 609
Set_Timeout_To 610
Set_Validate_To . . . 611
Set_VFileKey_To . . . 613
Set_VFileMode_To . . . 614
SET_WHILE_TO 615
SetMouseXY 555

SField 131, 617

SGBuffer 479, 611
SGFieldCode . . 460, 479, 527

Change Default 527
Set_FieldCode_To . . . 527

SgFieldEdited 618
SGFieldType 619
Shadow

Set_ScreenShadow_On . . 592
Shadow, LineStyle 194
Sharable file attributes . 154
SHOW

EditMemo clause 276
EditText clause 281

ShowMouse 620
SingleLine, LineStyle . . 194
SingleTopDoubleSide, LineStyle

. 194
SInteger 621
Size

RecSize 429
Set_PageSize_To 561
Set_Spooler_Size . . . 599

SIZE&DATE, PickFile . . . 381
SKIP 622
SnipRec, Virtual Files . . 623
Snow

Set_SnowProtection_On/Off
. 596

Soft Find 31, 306
Software Requirements . . . 4
SolidLine, LineStyle . . . 194
SortVFile 624
SOUNDEX . . 32, 325, 354, 625

FIND 33, 625
Set_Soundex_To 597

Spanish Date 69
Spanish date format . . . 509
Special Attributes, DialogBox

Spiders, screen saver . . 125,
601

Split, file name 311
SpoolArray 627
Spooler

CancelAllSpoolFiles . . 205
CancelSpoolFile 205
CancelSpooling 206
CharsInSpooler 210
Default Settings . . . 118
Default Size 8K 599
ListSpoolData 343
Network printing . . . 151
Print Spooling 117
Set_PacketSize_To . . . 559
Set_Spooler_On 598
Set_Spooler_Size . . . 599
SpoolArray 627
Spooler Routines . . . 117
SpoolerReady 628
SpoolErrorMsg 628

 708 TOPAZ Subject Index

SpoolFile 627
StartSpooling 633
StopSpooling 633

SpoolFile 627
SpreadSheetMode, ReadGets DisableMouse 262

. 423
Squeeze 629
SReal 630
Stack space 126
Standard Data File Targets 114

Appending 180
Copying 232

StartProgress bar 631
StartSpooling 633
Status Dot Commands 26

DisplayStatus 266
PrintComStatus 406
RealPrinterStatus . . 425
Set_Status_Bottom . . 603
Set_Status_Top 603

STAYON EditText 280
Menu Clause 359

STAYON, EditRecord clause Help 63
. 278

StayOnUntilRemoved, DialogBox Print Document 63
. 259

StopSpooling 633
String Manipulation 63

After 171
Before 191
Between 192
Center 208
Indent 323
Plural 390

String search Elapsed 496
Search 461
SearchFile 463

Structures, Different . . 261
Subgroups, Report 604
SUM 634
Suspend, SuspendProgress 636
SuspendISRs, ISRs . . 123, 635
System Clock 71
System Requirements 4
SYSTEM, PickFile clause . 381
SystemDate 637
SystemTime . . . 71, 73, 637
Tag 79

Lists 79
Order of items returned SystemTime . . 71, 72, 637

. 607
pre-tagging 605
Set_Tag 605
Set_Tag_Color_To . . . 606
Set_TagOrder_On/Off . 607
Set_TagWindow_To . . . 608
TagFiles 80, 638
TaggedFile 80, 639
TaggedItem 80, 640
TagItems 80, 641

Talk TPC 8

Default OFF 609
SET_TALK_ON/OFF 609

Target 114
add Mouse target . . . 168

EnableMouse 283
PopMouse 397
positive ID's 114
PushMouse 416

Technical Support iv
TED - TOPAZ Text Editor . . 60
Templates 8, 25, 26

Default 25

Macro 26
Text Editor 60

Basic Commands . . . 60, 61
Block Commands . . . 61, 62
Clauses 63

Function Keys 62

Move/Resize Window . . . 63

Save/Load Commands . . . 62
Search/Replace Commands 61,

Word Wrap commands . . . 62
TIME 72, 642

AdditionalTime 72
AM_PM 174
Clock 71
CurrentTime 72

InHours 327
InMinutes 327
InSeconds 328
InTicks 331
Mathematics 71
Military 496
PICTURE 387
PICTURE Format 387
return string 643
Set_Clock_Format_To . . 496
Set_Clock_To 498
Set_Clocks_On/Off . . . 497
Set_Timeout_To 610
System Clock 71

TimeDiff 72, 643
TimeError 72, 102
TimeFrom 643
TimePlus 72, 644

Timeout, Menu 550
Timeouts, DialogBox 37
Top, GoTop 319
Topaz Units 15
TopView 51
Toshiba printer codes . . 671

 TOPAZ Subject Index 709

Trigger Key . . 110, 112, 238
TRIM 645

LTRIM 352
Type, FieldType 295
Type, screen saver . . . 601
UniqueFilename 646
UNIT.TEM 26
Units, Overlay compatible Move and Resize Editor . 63

. 129
UNLOCK 139, 647
Update Set_BrowseWindow_To . . 485

LUPDATE 353
UpdateBrowseRow . . . 648
UpdateBrowseScreen . . 649

UPPER 650
IsUpper 337

UpperCase 650
USE 651
UserChar 388, 677
UserSet 388, 677
Using dBASE Files 18
Validation, Set_Validate_To Set_PickWindow_To . . . 567

. 611
ValidDate 653
ValidFilename 654
VFiles, Virtual Files . . . 82
VGA, bright background . 402
VideoCard 655
VideoMode 335, 656
VIDPOP 104
VidpopPageSize 300
ViewQueue 657
Virtual Files 82

AddStru 167
ASCENDING 85
AvailableMemory . . . 190
CopyStruFrom 227
CopyStruTo 228
CurrentMemory 245
DESCENDING 85
EvaluateBiggest . . . 286
FIFO 85, 614
FreeSpace 310
INSERTION 85, 614
InsertRec 329
LIFO 85, 614
MemoryType 190
PopRec 398
PushRec 417
RequiredMemory 440
Set_VFileKey_To . . . 613
Set_VFileMode_To . . . 614
SnipRec 623
SortVFile 624

VolumeLabel 658
WAIT 659
WAIT_TO 659
WaitOnError 102
Warmboot, IPL 332
WatchKeys 677

ReadGets 423

WhichArea 661
While, SET_WHILE_TO . . . 615
Width, Set_MemoWidth_To . 544
Window

ClearWindowStack . 216, 399
DisplayWindow 267
FillWindow 302

PopWindow 403
PushWindow 419

Set_CalcWindow_To . . . 490
Set_DialogWindow_To . . 513
Set_EditorWindow_To . . 518
Set_EditWindow_To . . . 519
Set_HelpWindow_To . . . 533
Set_MemoDisplayWindow_To

. 543
Set_MemoWindow_To . . . 545
Set_MenuWindow_To . . . 551
Set_Mouse_Window_To . . 554

Set_Position_To 568
Set_ProgressWindow_To . 575
Set_SSWindow_To 602
Set_TagWindow_To . . . 608

Windows
Database engine . . 159, 163
FExpand 288
FindFirst 305
FSplit 311
WDialogBox 660
WReadMemo 662
WWriteMemo 663

Word processing, merging . 230
Word Wrap commands, Editor . 62
Workarea 172, 464, 466
WRAP

EditMemo clause 275
EditText clause . . 280, 281

WReadMemo 662
WriteMemo, Windows 663
WWriteMemo 663
YEAR 68, 664

CYEAR 248
ZAP 665

Multi-User 145

 710 TOPAZ Subject Index

